|-转 用Kimi编程
我现在有个想法,用声音识别的模型,识别出源音频里的指定的人声,并把其提取出来,请给出合适的模型,并提供完整的python代码
根据你的需求,可以使用pyannote.audio库来实现指定人声的识别和提取。pyannote.audio是一个强大的音频处理库,能够进行说话人识别和语音分离。
以下是基于pyannote.audio的Python代码示例,用于识别并提取指定人声:
安装依赖
在运行代码之前,请确保安装了以下依赖:
pip install pyannote.audio pip install torch pip install scipy
完整代码示例
# _*_ coding: utf-8 _*_
# @Time : 2024/3/16 10:47
# @Author : Michael
# @File : speaker_rec.py
# @desc :
import torch
from pyannote.audio import Model, Pipeline, Inference
from pyannote.core import Segment
from scipy.spatial.distance import cosine
def extract_speaker_embedding(pipeline, audio_file, speaker_label):
"""
提取指定说话人的嵌入向量
"""
diarization = pipeline(audio_file)
speaker_embedding = None
for turn, _, label in diarization.itertracks(yield_label=True):
if label == speaker_label:
segment = Segment(turn.start, turn.end)
speaker_embedding = inference.crop(audio_file, segment)
break
return speaker_embedding
def recognize_speaker(pipeline, audio_file, speaker_embeddings):
"""
识别给定音频中的说话人
"""
diarization = pipeline(audio_file)
speaker_turns = []
for turn, _, speaker_label in diarization.itertracks(yield_label=True):
# 提取切片的声纹特征
embedding = inference.crop(audio_file, turn)
distances = {}
for speaker, embeddings in speaker_embeddings.items():
# 计算与已知说话人的声纹特征的余弦距离
distances[speaker] = min([cosine(embedding, e) for e in embeddings])
# 选择距离最小的说话人
recognized_speaker = min(distances, key=distances.get)
speaker_turns.append((turn, recognized_speaker))
return speaker_turns
def extract_speaker_audio(audio_file, speaker_turns, output_file):
"""
提取指定说话人的音频片段
"""
from pydub import AudioSegment
audio = AudioSegment.from_wav(audio_file)
extracted_audio = AudioSegment.silent(duration=0)
for turn, speaker in speaker_turns:
start_ms = int(turn.start * 1000)
end_ms = int(turn.end * 1000)
extracted_audio += audio[start_ms:end_ms]
extracted_audio.export(output_file, format="wav")
if __name__ == "__main__":
token = "hf_***" # 请替换为您的Hugging Face Token
# 加载声音分离识别模型
pipeline = Pipeline.from_pretrained(
"pyannote/speaker-diarization-3.1",
use_auth_token=token, # 在项目页面agree使用协议,并获取 Hugging Face Token
)
# 加载声纹嵌入模型
embed_model = Model.from_pretrained("pyannote/embedding", use_auth_token=token)
inference = Inference(embed_model, window="whole")
# 假设您已经有一个包含不同人声的音频文件集,以及对应的人
audio_files = {
"mick": "mick.wav", # mick的音频
"moon": "moon.wav", # moon的音频
}
speaker_embeddings = {}
for speaker, audio_file in audio_files.items():
diarization = pipeline(audio_file)
for turn, _, speaker_label in diarization.itertracks(yield_label=True):
embedding = extract_speaker_embedding(pipeline, audio_file, speaker_label)
# 获取原始已知说话人的声纹特征
speaker_embeddings.setdefault(speaker, []).append(embedding)
# 给定新的未知人物的音频文件
given_audio_file = "2_voice.wav" # 前半部分是 mick 说话,后半部分是 moon 说话
# 识别给定音频中的说话人
recognized_speakers = recognize_speaker(pipeline, given_audio_file, speaker_embeddings)
print("Recognized speakers in the given audio:")
for turn, speaker in recognized_speakers:
print(f"Speaker {speaker} spoke between {turn.start:.2f}s and {turn.end:.2f}s")
# 提取指定说话人的音频
target_speaker = "mick" # 指定要提取的说话人
target_turns = [(turn, speaker) for turn, speaker in recognized_speakers if speaker == target_speaker]
extract_speaker_audio(given_audio_file, target_turns, f"{target_speaker}_extracted.wav")
代码说明
- 说话人嵌入提取:extract_speaker_embedding函数用于从音频文件中提取指定说话人的嵌入向量。
- 说话人识别:recognize_speaker函数通过比较嵌入向量来识别音频中的说话人。
- 音频提取:extract_speaker_audio函数使用pydub库从原始音频中提取指定说话人的音频片段。
注意事项
- 确保你有有效的Hugging Face Token,用于加载预训练模型。
- 你可能需要根据实际情况调整代码中的音频文件路径和说话人标签。
希望这段代码能帮助你实现指定人声的识别和提取! ...
浏览更多内容请先登录。
立即注册
更新于:2025-08-19 22:20:38
相关内容
推荐内容