|-转 用Kimi编程
我现在有个想法,用声音识别的模型,识别出源音频里的指定的人声,并把其提取出来,请给出合适的模型,并提供完整的python代码
根据你的需求,可以使用pyannote.audio库来实现指定人声的识别和提取。pyannote.audio是一个强大的音频处理库,能够进行说话人识别和语音分离。
以下是基于pyannote.audio的Python代码示例,用于识别并提取指定人声:
安装依赖
在运行代码之前,请确保安装了以下依赖:
pip install pyannote.audio pip install torch pip install scipy
完整代码示例
# _*_ coding: utf-8 _*_ # @Time : 2024/3/16 10:47 # @Author : Michael # @File : speaker_rec.py # @desc : import torch from pyannote.audio import Model, Pipeline, Inference from pyannote.core import Segment from scipy.spatial.distance import cosine def extract_speaker_embedding(pipeline, audio_file, speaker_label): """ 提取指定说话人的嵌入向量 """ diarization = pipeline(audio_file) speaker_embedding = None for turn, _, label in diarization.itertracks(yield_label=True): if label == speaker_label: segment = Segment(turn.start, turn.end) speaker_embedding = inference.crop(audio_file, segment) break return speaker_embedding def recognize_speaker(pipeline, audio_file, speaker_embeddings): """ 识别给定音频中的说话人 """ diarization = pipeline(audio_file) speaker_turns = [] for turn, _, speaker_label in diarization.itertracks(yield_label=True): # 提取切片的声纹特征 embedding = inference.crop(audio_file, turn) distances = {} for speaker, embeddings in speaker_embeddings.items(): # 计算与已知说话人的声纹特征的余弦距离 distances[speaker] = min([cosine(embedding, e) for e in embeddings]) # 选择距离最小的说话人 recognized_speaker = min(distances, key=distances.get) speaker_turns.append((turn, recognized_speaker)) return speaker_turns def extract_speaker_audio(audio_file, speaker_turns, output_file): """ 提取指定说话人的音频片段 """ from pydub import AudioSegment audio = AudioSegment.from_wav(audio_file) extracted_audio = AudioSegment.silent(duration=0) for turn, speaker in speaker_turns: start_ms = int(turn.start * 1000) end_ms = int(turn.end * 1000) extracted_audio += audio[start_ms:end_ms] extracted_audio.export(output_file, format="wav") if __name__ == "__main__": token = "hf_***" # 请替换为您的Hugging Face Token # 加载声音分离识别模型 pipeline = Pipeline.from_pretrained( "pyannote/speaker-diarization-3.1", use_auth_token=token, # 在项目页面agree使用协议,并获取 Hugging Face Token ) # 加载声纹嵌入模型 embed_model = Model.from_pretrained("pyannote/embedding", use_auth_token=token) inference = Inference(embed_model, window="whole") # 假设您已经有一个包含不同人声的音频文件集,以及对应的人 audio_files = { "mick": "mick.wav", # mick的音频 "moon": "moon.wav", # moon的音频 } speaker_embeddings = {} for speaker, audio_file in audio_files.items(): diarization = pipeline(audio_file) for turn, _, speaker_label in diarization.itertracks(yield_label=True): embedding = extract_speaker_embedding(pipeline, audio_file, speaker_label) # 获取原始已知说话人的声纹特征 speaker_embeddings.setdefault(speaker, []).append(embedding) # 给定新的未知人物的音频文件 given_audio_file = "2_voice.wav" # 前半部分是 mick 说话,后半部分是 moon 说话 # 识别给定音频中的说话人 recognized_speakers = recognize_speaker(pipeline, given_audio_file, speaker_embeddings) print("Recognized speakers in the given audio:") for turn, speaker in recognized_speakers: print(f"Speaker {speaker} spoke between {turn.start:.2f}s and {turn.end:.2f}s") # 提取指定说话人的音频 target_speaker = "mick" # 指定要提取的说话人 target_turns = [(turn, speaker) for turn, speaker in recognized_speakers if speaker == target_speaker] extract_speaker_audio(given_audio_file, target_turns, f"{target_speaker}_extracted.wav")
代码说明
- 说话人嵌入提取:extract_speaker_embedding函数用于从音频文件中提取指定说话人的嵌入向量。
- 说话人识别:recognize_speaker函数通过比较嵌入向量来识别音频中的说话人。
- 音频提取:extract_speaker_audio函数使用pydub库从原始音频中提取指定说话人的音频片段。
注意事项
- 确保你有有效的Hugging Face Token,用于加载预训练模型。
- 你可能需要根据实际情况调整代码中的音频文件路径和说话人标签。
希望这段代码能帮助你实现指定人声的识别和提取! ...
浏览更多内容请先登录。
立即注册
更新于:2025-08-19 22:20:38
相关内容
推荐内容