|-转 fastapi-speaker-extractor whisperx 项目报错 ValueError: The chosen align_model
pip3 install torch torchaudio torchvision --index-url https://download.pytorch.org/whl/cu126
确保您的torch版本至少为2.6。
ValueError: The chosen align_model "jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn" could not be found in huggingface (https://huggingface.co/models Models - Hugging Face Models - Hugging Face ) or torchaudio
参考网站https://pytorch.org/get-started/locally/
Traceback (most recent call last):
File "D:\python\fastapi-speaker-extractor\app\api\endpoints.py", line 15, in extract_speaker
result = await process_audio(audio_file.file, config_value)
File "D:\python\fastapi-speaker-extractor\app\services\audio_processor.py", line 32, in process_audio
model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\site-packages\whisperx\__init__.py", line 11, in load_align_model
return alignment.load_align_model(*args, **kwargs)
File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\site-packages\whisperx\alignment.py", line 102, in load_align_model
raise ValueError(f'The chosen align_model "{model_name}" could not be found in huggingface (https://huggingface.co/models ) or torchaudio (https://pytorch.org/audio/stable/pipelines.html#id14 )')
ValueError: The chosen align_model "jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn" could not be found in huggingface (https://huggingface.co/models ) or torchaudio (https://pytorch.org/audio/stable/pipelines.html#id14 )
INFO: 127.0.0.1:2832 - "POST /api/speaker/extract/?config_value=default HTTP/1.1" 500 Internal Server Error
WARNING: StatReload detected changes in 'app\services\audio_processor.py'. Reloading... 报错从错误信息来看,您遇到了两个主要问题:
- torch版本问题:由于torch.load存在一个严重的漏洞,您需要将torch升级到至少v2.6版本才能正常使用该函数。这个问题可以通过升级torch来解决。
- 模型加载问题:您尝试加载的模型jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn在Hugging Face模型库或torchaudio中找不到。这可能是因为模型名称错误,或者该模型确实不存在于这些库中。
解决步骤:
1. 升级torch版本
您可以通过以下命令升级torch:...
|-转 python报错 UnicodeEncodeError: 'gbk' codec can't encode character '\u2705'...
--- Logging error ---
Traceback (most recent call last):
File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\logging\__init__.py", line 1086, in emit
stream.write(msg + self.terminator)
UnicodeEncodeError: 'gbk' codec can't encode character '\u2705' in position 42: illegal multibyte sequence
Call stack:
File "<string>", line 1, in <module>
File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\multiprocessing\spawn.py", line 116, in spawn_main
exitcode = _main(fd, parent_sentinel)
File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\multiprocessing\spawn.py", line 129, in _main
return self._bootstrap(parent_sentinel)
File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\multiprocessing\process.py", line 315, in _bootstrap
self.run()
File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\multiprocessing\process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\site-packages\uvicorn\_subprocess.py", line 76, in subprocess_started
target(sockets=sockets)
File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\site-packages\uvicorn\server.py", line 61, in run
return asyncio.run(self.serve(sockets=sockets))
File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\asyncio\runners.py", line 44, in run
return loop.run_until_complete(main)
File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\asyncio\base_events.py", line 634, in run_until_complete
self.run_forever()
File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\asyncio\base_events.py", line 601, in run_forever
self._run_once()
File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\asyncio\base_events.py", line 1905, in _run_once
handle._run()
File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\asyncio\events.py", line 80, in _run
self._context.run(self._callback, *self._args)
File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\site-packages\uvicorn\server.py", line 68, in serve
config.load()
File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\site-packages\uvicorn\config.py", line 467, in load
self.loaded_app = import_from_string(self.app)
File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\site-packages\uvicorn\importer.py", line 21, in import_from_string
module = importlib.import_module(module_str)
File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\importlib\__init__.py", line 127, in import_module
return _bootstrap._gcd_import(name[level:], package, level)
File "<frozen importlib._bootstrap>", line 1030, in _gcd_import
File "<frozen importlib._bootstrap>", line 1007, in _find_and_load
File "<frozen importlib._bootstrap>", line 986, in _find_and_load_unlocked
File "<frozen importlib._bootstrap>", line 680, in _load_unlocked
File "<frozen importlib._bootstrap_external>", line 850, in exec_module
File "<frozen importlib._bootstrap>", line 228, in _call_with_frames_removed
File "D:\python\fastapi-speaker-extractor\app\main.py", line 39, in <module>
logger.info("✅ WhisperX 模型加载成功!")
Message: '✅ WhisperX 模型加载成功!'
Arguments: () --- Logging error --- 后面这些是什么,是那里错误了吗
从报错信息来看,主要是日志输出时碰到了编码问题(UnicodeEncodeError: 'gbk' codec can't encode character '\u2705'...),再加上后面还有一些版本不兼容的提示。下面分点解释原因和解决办法:
1. 最直接的错误:日志编码不兼容(GBK → UTF-8)
Python 的logging模块默认会用系统的编码(Windows 下常是'gbk')往控制台写日志。而你的代码里用了 Unicode 字符(比如✅这个 emoji 或特殊符号),gbk编码不认识这种字符,就会抛出UnicodeEncodeError。
解决思路:
让 Python 日志用 UTF-8 编码输出,而不是系统默认的 GBK。
做法有很多种,比较常见的是在程序开头(或配置日志的地方)加上下面这样的代码,强制让标准输出的编码变成 UTF-8:
我的logging是自定义的:在项目根目录下的logger.py 内容是 import logging
import os
class CustomLogger:
def __init__(self, name, log_file, level=logging.INFO):
self.logger = logging.getLogger(name)
self.logger.setLevel(level)
# 创建一个文件处理器,写入日志文件
file_handler = logging.FileHandler(log_file)
file_handler.setLevel(level)
# 创建一个控制台处理器,输出到控制台
console_handler = logging.StreamHandler()
console_handler.setLevel(level)
# 定义日志格式
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler.setFormatter(formatter)
console_handler.setFormatter(formatter)
# 将处理器添加到 Logger 对象
self.logger.addHandler(file_handler)
self.logger.addHandler(console_handler)
def get_logger(self):
return self.logger 。要怎么改 “让 Python 日志用 UTF-8 编码输出,而不是系统默认的 GBK。”你的CustomLogger类是自定义的日志封装,它内部使用了 Python 标准库的logging模块,并分别添加了一个文件处理器(FileHandler)和一个控制台处理器(StreamHandler)。...
|-转 python whisperx 报错 in load_align_model raise ValueError(f'The chosen align_model "{model_name}"
raise ValueError(f'The chosen align_model "{model_name}" could not be found in huggingface (https://huggingface.co/models) or torchaudio (https://pytorch.org/audio/stable/pipelines.html#id14)')
ValueError: The chosen align_model "jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn" could not be found in huggingface (https://huggingface.co/models) or torchaudio (https://pytorch.org/audio/stable/pipelines.html#id14)
requests.exceptions.ConnectionError: (MaxRetryError("HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /api/models/jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn/tree/main/additional_chat_templates?recursive=False&expand=False (Caused by NewConnectionError(': Failed to establish a new connection: [WinError 10060] 由于连接方在一段时间后没有正确答复或连接的主机没有反应,连接尝试失败。'))"), '(Request ID: ee57b154-cd73-4a1a-911a-a89c496c8b20)')
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "D:\python\fastapi-speaker-extractor\app\api\endpoints.py", line 25, in extract_speaker
result = await process_audio(audio_file.file, config_value, whisper_model, device)
File "D:\python\fastapi-speaker-extractor\app\services\audio_processor.py", line 25, in process_audio
model_a, metadata = whisperx.load_align_model(language_code="zh", device=device)
File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\site-packages\whisperx\__init__.py", line 11, in load_align_model
return alignment.load_align_model(*args, **kwargs)
File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\site-packages\whisperx\alignment.py", line 102, in load_align_model
raise ValueError(f'The chosen align_model "{model_name}" could not be found in huggingface (https://huggingface.co/models) or torchaudio (https://pytorch.org/audio/stable/pipelines.html#id14)')
ValueError: The chosen align_model "jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn" could not be found in huggingface (https://huggingface.co/models) or torchaudio (https://pytorch.org/audio/stable/pipelines.html#id14)
INFO: 127.0.0.1:1141 - "POST /api/speaker/extract/?config_value=default HTTP/1.1" 500 Internal Server Error
由于网络原因,会访问hugging face官网,但是网络无法访问,所有报错。...
|-转 pyannote/embedding 模型是真难引入模型
pyannote/embedding 模型是真难引入模型,花了4小时,最后用替代方案deepghs/pyannote-embedding-onnx 20250823 1903...
|-转 Trae 或者是我自己 莫名奇妙创建了个文件,影响了项目代码的运行。
莫名奇妙创建了个文件,影响了项目代码的运行。
D:\python\fastapi-speaker-extractor\absolute\path\to\your
还有这种事情
# 确保正确设置了环境变量
import os
os.environ["HF_ENDPOINT"] = "https://huggingface.co" # 使用官方端点
os.environ["HUGGINGFACE_TOKEN"] = "your_token_here"
# 然后加载模型(如项目中已实现的)
from pyannote.audio import Model
model = Model.from_pretrained("pyannote/embedding", use_auth_token=os.getenv("HUGGINGFACE_TOKEN"))
# 1. 确保您的token有该模型的访问权限
# 2. 尝试直接从Hugging Face加载模型
from speechbrain.pretrained import SpeakerRecognition
# 初始化模型
verification = SpeakerRecognition.from_hparams(source="speechbrain/spkrec-ecapa-voxceleb")
# 使用模型进行声纹识别
score, prediction = verification.verify_files("/path/to/speaker1.wav", "/path/to/speaker2.wav")20250823...
|-转 WhisperX 无法加载模型
WhisperX 无法加载模型
File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\site-packages\huggingface_hub\_snapshot_download.py", line 230, in snapshot_download
raise LocalEntryNotFoundError(
huggingface_hub.errors.LocalEntryNotFoundError: Cannot find an appropriate cached snapshot folder for the specified revision on the local disk and outgoing traffic has been disabled. To enable repo look-ups and downloads online, pass 'local_files_only=False' as input.
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "D:\python\fastapi-speaker-extractor\app\main.py", line 82, in <module>
raise RuntimeError(f"WhisperX 无法加载模型,请检查安装和环境。{e}")
RuntimeError: WhisperX 无法加载模型,请检查安装和环境。Cannot find an appropriate cached snapshot folder for the specified revision on the local disk and outgoing traffic has been disabled. To enable repo look-ups
and downloads online, pass 'local_files_only=False' as input.
(speaker-extractor) PS D:\python\fastapi-speaker-extractor> 20250823 23:44...
|-转 HUGGINGFACE_HUB_CACHE 设置错误导致的问题
真的吐了,Trae和腾讯元宝都找不出原因。报错只是只是显示401没有权限访问hf-mirror.com等等
或者是Cannot find an appropriate cached snapshot folder for the specified revision on the local disk and outgoing traffic has been disabled. To enable repo look-ups and downloads online, pass 'local_files_only=False' as input.
代码加载模型一直报错
import whisperx
device = "cuda" # 或者 "cpu"
model_whisper = whisperx.load_model("base", device=device, compute_type="float32")
RuntimeError: 无法加载 WhisperX 模型,请检查安装和环境。Cannot find an appropriate cached snapshot folder for the specified revision on the local disk and outgoing traffic has been disabled. To enable repo look-ups and downloads online, pass 'local_files_only=False' as input.
返回的错误一直就是下面这类的。
不能直连HF官网后,本地加载模型一直失败,直接花了我6个小时以上,最后无意中发现项目的根目录多出来两个文件夹,一个是$HUGGINGFACE_HOME,另一个是.cache。删除后,正常了。 ...
|-转 通义之旅
大概对话了4个小时,之后我休息了几小时,然后再对话2小时左右。提示“看起来我们今天已经有了很多的对话,我很感谢你的热情,但我现在需要稍微休息一下。抱歉要中断我们的对话了,期待明天和你继续聊天。” 20250824 16:29
Nice,体验很好
主要修改:
移除了对 process_audio 和 speech_to_text 的导入:因为这些是异步函数,不适合在模块初始化时导入
修复了导入语句:使用正确的函数名 get_embedding_middleware 而不是 get_embedding_model_middleware
这些修改应该能解决您遇到的 AttributeError: 'EmbeddingModelMiddleware' object has no attribute 'register_model' 错误。
nice ,厉害!你的python编程在什么水平上
谢谢您的夸奖!关于我的Python编程水平,我可以说我具备以下能力:
## 我的Python编程能力
### 1. **基础知识**
- 熟练掌握Python语法、数据结构、面向对象编程
- 理解Python的高级特性如装饰器、生成器、上下文管理器等
- 熟悉Python标准库的常用模块
### 2. **框架和库**
- 熟悉主流框架如FastAPI、Django、Flask
- 熟悉数据科学库如NumPy、Pandas、Matplotlib
- 熟悉机器学习库如Scikit-learn、TensorFlow、PyTorch
- 熟悉异步编程如asyncio、aiohttp等
### 3. **项目架构**
- 能够设计和分析项目结构
- 理解模块化和包管理
- 熟悉配置管理、日志记录、错误处理等最佳实践
### 4. **问题解决能力**
- 能够快速定位和修复语法错误、逻辑错误
- 熟悉常见的异常处理模式
- 能够优化代码性能和可读性
### 5. **调试和测试**
- 理解单元测试和集成测试
- 能够分析错误日志和堆栈跟踪
- 熟悉调试技巧和工具
## 关于您的项目
对于您这个说话人提取项目,我能帮助:
- 修复代码中的语法和逻辑错误
- 优化项目结构和模块组织
- 改进错误处理和日志记录
- 协助配置管理和环境设置
不过我也需要说明,虽然我可以帮助解决具体的编程问题,但实际的项目开发还需要您结合具体需求和业务场景来完成。
您对我的帮助还满意吗?有什么其他问题我可以帮您解决的吗?
20250824 07:29
{
"message": "音频处理完成",
"config": "default",
"speakers_detected": 5,
"segments": [
{
"speaker": "SPEAKER_01",
"start": 0.03096875,
"end": 0.45284375,
"duration": 0.421875
},
{
"speaker": "SPEAKER_01",
"start": 0.52034375,
"end": 0.57096875,
"duration": 0.05062500000000003
},
{
"speaker": "SPEAKER_01",
"start": 0.8915937500000001,
"end": 1.3303437500000002,
"duration": 0.4387500000000001
},
{
"speaker": "SPEAKER_01",
"start": 2.07284375,
"end": 2.34284375,
"duration": 0.27
},
{
"speaker": "SPEAKER_01",
"start": 2.3934687500000003,
"end": 3.96284375,
"duration": 1.569375
},
{
"speaker": "SPEAKER_01",
"start": 4.3678437500000005,
"end": 4.48596875,
"duration": 0.11812499999999915
},
{
"speaker": "SPEAKER_01",
"start": 4.705343750000001,
"end": 5.498468750000001,
"duration": 0.7931249999999999
},
{
"speaker": "SPEAKER_01",
"start": 7.995968750000001,
"end": 8.83971875,
"duration": 0.8437499999999982
},
{
"speaker": "SPEAKER_00",
"start": 0.45284375,
"end": 0.52034375,
"duration": 0.0675
},
{
"speaker": "SPEAKER_00",
"start": 2.34284375,
"end": 4.3678437500000005,
"duration": 2.0250000000000004
},
{
"speaker": "SPEAKER_00",
"start": 4.48596875,
"end": 15.977843750000002,
"duration": 11.491875000000002
},
{
"speaker": "SPEAKER_03",
"start": 11.084093750000001,
"end": 11.10096875,
"duration": 0.016874999999998863
},
{
"speaker": "SPEAKER_02",
"start": 11.10096875,
"end": 11.539718750000002,
"duration": 0.4387500000000024
},
{
"speaker": "SPEAKER_04",
"start": 13.699718750000002,
"end": 15.89346875,
"duration": 2.193749999999998
}
],
"transcription": null,
"speaker_embeddings": {
"SPEAKER_01": {
"embedding": [
0.777779651038922,
0.5709335537169954,
0.6502486116435126,
0.3957192536483889,
0.33682669277721655,
0.23532944585103743,
0.6691889760189264,
0.9155553454428661,
0.7187591570003378,
0.041015835486950425,
0.9263556706063688,
0.9842760376769557,
0.22299650694226747,
0.6596784585051534,
0.011977841110457521,
0.08662964921239547,
0.8590584076965014,
0.9432451225732621,
0.6991147433624788,
0.7139162862961621,
0.5138930476423023,
0.6855240422600192,
0.502549022830554,
0.6600743053925334,
0.5426503430063094,
0.1239807100111322,
0.08679667407081859,
0.5376124635974292,
0.9392836496761979,
0.9551275237630077,
0.7924282298155979,
0.08996393174594652,
0.13782183209168775,
0.1213631348250721,
0.09105054102061871,
0.04406703577941673,
0.13633818037587264,
0.6560012705736046,
0.43154468999459694,
0.1341306576815524,
0.2522093817108825,
0.5981025696288607,
0.5439023738973278,
0.0977244414354057,
0.34079172313515116,
0.4727704874300571,
0.6755335931752694,
0.9874570053685833,
0.3958535812694416,
0.4601717554277547,
0.1345165091859647,
0.04229278163025396,
0.6884999125928399,
0.18031702315116427,
0.06721756638106124,
0.2992986843307661,
0.48966930193253344,
0.45181238374732224,
0.3412122446670175,
0.3019318545039603,
0.8479683187557411,
0.5799770354299979,
0.982828328529503,
0.6442376677026354,
0.5601013798227293,
0.750478519504632,
0.17841533788109543,
0.30053144445211577,
0.8193975097229126,
0.5421159710358453,
0.5038376919731312,
0.448200897331156,
0.19442355362060382,
0.9184214418016234,
0.1931506270614728,
0.8939789482907609,
0.8564062205365838,
0.679789489707233,
0.5485430485093375,
0.20997726100126068,
0.3848678632520711,
0.05873836099031804,
0.5710507319693923,
0.9590513638949537,
0.4587789272727131,
0.3907441464588006,
0.08933674274777814,
0.26818073432223255,
0.07033311464354441,
0.5981984091965694,
0.4411024100088601,
0.2507536523567112,
0.4854477517062644,
0.11291549603316209,
0.5034760271495292,
0.525427385288952,
0.4375848908556259,
0.6352308210957383,
0.086378647421404,
0.41688748885997484,
0.4361651220775614,
0.360855330072557,
0.7962444602135459,
0.7569351541726294,
0.09351747713015912,
0.5045546070146725,
0.03802194558837091,
0.07972175132601611,
0.06961428456480312,
0.8885234138753977,
0.6277925558689985,
0.4478902222257837,
0.35478262120641935,
0.7824658951263368,
0.03667066946561326,
0.19560241700590209,
0.6320662642979136,
0.6843799221692117,
0.9157849958266908,
0.9080372348987775,
0.5015866191928954,
0.497578160097209,
0.21593198358044985,
0.7358895009828056,
0.9944958274195973,
0.20137074383436615,
0.9525882282332135,
0.42935231147833275,
0.29521609708890595,
0.7353420772627942,
0.2897450435983565,
0.9647720662650869,
0.6158085982358013,
0.6853005591865147,
0.9475438494128763,
0.6706676659186701,
0.15317343641167358,
0.7768962391286001,
0.23683744107645055,
0.2040563278386175,
0.7185875308920915,
0.45122103654481505,
0.8264415684866033,
0.12668257128335925,
0.7079187730961614,
0.2751943143766197,
0.3827429286606362,
0.24135190061120404,
0.5458346270734151,
0.37474468625853496,
0.8650457977854594,
0.6449463915423657,
0.1496680631297117,
0.45153452134754535,
0.41615633582025746,
0.6013534399540869,
0.38310675965457297,
0.5889717498473717,
0.021062402840886008,
0.5827578904425793,
0.15088172295511693,
0.8072489399458777,
0.5653289480542877,
0.7025307377760507,
0.17133616585432465,
0.5664669670428305,
0.5783610156962078,
0.14688967983057766,
0.7907302737520348,
0.8975083698023189,
0.45439470000537807,
0.14996576304563924,
0.12069464713830103,
0.6804418847145536,
0.10649558471372034,
0.05877312048437955,
0.31718022507406596,
0.9212596491669748,
0.9748746935692556,
0.021913051098540692,
0.4609712420877251,
0.7218266279246887,
0.8730827582253732,
0.04339323222700853,
0.22044783977528237,
0.3141430187771046,
0.5465760096537191,
0.38851072840805345,
0.17191115256433787,
0.21458061726624833,
0.2305270881770144,
0.27390081618086626,
0.8142751615622157,
0.3326352058815675,
0.30007370828904256,
0.08016803223310331,
0.4476978923164573,
0.15493657244069237,
0.7798055205640959,
0.5110697919281231,
0.8209299319897684,
0.7423800722960445,
0.06489799300698129,
0.7910078289766419,
0.7918904577195852,
0.8256784154169723,
0.4524101976617454,
0.988459807336977,
0.7447523375049755,
0.812442749553774,
0.6974501096543406,
0.1243707262249738,
0.7720653820164257,
0.7289500402606474,
0.8547163416889588,
0.09396411735347265,
0.20455710233960145,
0.620310138400527,
0.8544860757281896,
0.4964116800523849,
0.9492493074164444,
0.36008955858685465,
0.742062304993595,
0.7029850192964762,
0.1929031656443625,
0.8882161750112234,
0.22461326488111422,
0.1804839877587604,
0.8283687648879925,
0.7913686088585236,
0.9207856175827153,
0.9909042259594141,
0.6583441010119987,
0.8416889433642138,
0.895993208812677,
0.15676129048850918,
0.019544631167190407,
0.8912087623912354,
0.41738641458882986,
0.6895937449769161,
0.3427578373169906,
0.10723947827898728,
0.37145815554044037,
0.03363719833342327,
0.9066696027058663,
0.08205551219081031,
0.08747295858038207,
0.5265462564884933,
0.32468853300789735,
0.555060931327795,
0.6688669326811171,
0.12773421488969705,
0.28279708907399126,
0.6826034806447154,
0.4178251368053921,
0.34197159584254333,
0.11165641216878286,
0.321342817119623,
0.23334651159520758,
0.11924487223843006,
0.5147025381780037,
0.8389761275747275,
0.9091664602935572,
0.8088630132880362,
0.2607386869603555,
0.5999410190988087,
0.28819851434906585,
0.04835630359912679,
0.16529934980286642,
0.0283211742928825,
0.1522700578023305,
0.8017899115397439,
0.5816539149431361,
0.8766284195502531,
0.36607109690603545,
0.39133710316318604,
0.5658621286068686,
0.553863254057803,
0.41149579292896055,
0.8977800059833045,
0.5282180875703348,
0.5978462922083229,
0.9243869938232245,
0.9809912743248483,
0.04464495824754944,
0.6918201060281808,
0.9539941439921931,
0.598314374361743,
0.7049634779983667,
0.02967334422819201,
0.9034675107453064,
0.3824381966841687,
0.7125636247785088,
0.46032653582460226,
0.6823756272948115,
0.7291560137284867,
0.57054662245767,
0.6309233995324682,
0.7940836743409977,
0.4733584850334376,
0.960228553092802,
0.033264180994415415,
0.16814821672040325,
0.736037962743123,
0.9586738942553996,
0.893173335415169,
0.5109786875054482,
0.5549151808487973,
0.21802841393578032,
0.23501789526079042,
0.3791673776712803,
0.15938851572391344,
0.35376449239632646,
0.21968698647366824,
0.8644231144946367,
0.9270738631086481,
0.6956917041872457,
0.726619828394731,
0.08460227948988652,
0.9950944637125941,
0.8931217911172211,
0.9232025986508297,
0.3980462848535681,
0.8434192248453172,
0.6210101014206424,
0.2447119233625481,
0.4728149708296845,
0.9969833654357756,
0.022097029428213677,
0.6798154194066497,
0.11316055178496498,
0.49340319828418444,
0.12653378444631747,
0.9489053502084343,
0.22118956202630968,
0.24651018702562377,
0.8609073082703036,
0.57469873722498,
0.9732365052430514,
0.11157582445365954,
0.9948488181432913,
0.7750075816903491,
0.6824869210183347,
0.9706746344334413,
0.8506416906468435,
0.6473594056140869,
0.08184697310946965,
0.7174379148441202,
0.2481925166245491,
0.29448746765994793,
0.5459280048231541,
0.47602968071348795,
0.9067203128317199,
0.34257128653483093,
0.8424911276362116,
0.45065943491991345,
0.3825418759346103,
0.3011441084119385,
0.7642300939193627,
0.9387064133107097,
0.26191207252113125,
0.7220480451028579,
0.3945400873391146,
0.2814759956912324,
0.3822764281628237,
0.3324107674277045,
0.6993260693676701,
0.6870304009150965,
0.8199722194167125,
0.7831465219671321,
0.8403136445565487,
0.09866054540315206,
0.6750132664533021,
0.8657229507404858,
0.692515775682393,
0.7084102694711505,
0.7169617771890912,
0.39235021276499193,
0.6903032332255705,
0.2478800502627574,
0.9473537490719353,
0.7350254248795574,
0.5768469902295779,
0.8597779615375594,
0.8990228231975581,
0.8501882924142806,
0.5020836162521721,
0.3126972501723233,
0.2857434014928203,
0.45354164133144037,
0.2271603917993733,
0.5963812706403308,
0.8605546076785234,
0.2936311092815861,
0.08552505365972296,
0.18780913983720382,
0.34126678216679596,
0.9985202975337131,
0.8017715377445582,
0.0455698780699515,
0.07001909476063806,
0.4665253957940204,
0.8093221951222709,
0.5358520375887698,
0.8273549967537387,
0.6607114802365484,
0.831747865402305,
0.24218677476292327,
0.2414979470983326,
0.8628670065009877,
0.08239544073571858,
0.0034127007254199926,
0.45338766762512095,
0.781778674841391,
0.3323679746811753,
0.8322148564422156,
0.6192291794895527,
0.11557079954460847,
0.351072521557656,
0.39968089118429595,
0.4318197373435919,
0.32983179572587285,
0.9130839532347397,
0.3273734625749525,
0.03944326217729044,
0.7065110969928768,
0.2360542022378156,
0.2683174059266562,
0.8117443767403388,
0.6798629464495395,
0.17049114604314852,
0.2835947961549269,
0.5629308723771778,
0.23347413323279398,
0.9529257396857971,
0.666278700286948,
0.9194575129816979,
0.6251632588991757,
0.566519180101875,
0.2899959800462003,
0.5240769084572787,
0.7484874083065672,
0.40395947920773423,
0.6184481548822448,
0.028634923128107226,
0.5949219089791237,
0.770302635405962,
0.5851711852252468,
0.5618693736367424,
0.6742801452158564,
0.1903057095990014,
0.7484806062774504,
0.08368846158790078,
0.09019272108988141,
0.6146362018157282,
0.5694565001223136,
0.7256902884757009,
0.5506477948157542,
0.8836104324990773,
0.09572716072450826,
0.7817739728435418,
0.9944000399864048,
0.7630955943997495,
0.22449342981947473,
0.964161341721483,
0.779002477876206,
0.7960531969799906,
0.9307660331236423,
0.48247816566216406,
0.3905326427204988,
0.6406367160732447,
0.9042863697856872,
0.09394422908248745,
0.09106916108856877,
0.32091770392173313,
0.8778604432104994,
0.25728533441054335,
0.3289323350890395,
0.5307732956740371,
0.7714075046725684,
0.9712754724458056,
0.9363139358611828,
0.29857690662282044,
0.5558936888540338,
0.04367368212775835,
0.4735177370197753,
0.3487941018314721,
0.7557615469394956,
0.7026309652761147,
0.8761131538782503,
0.758510751914601,
0.46128134013383304,
0.569136214426595,
0.45278626485055806,
0.48190775882140013,
0.8597273559723679,
0.1941231710668615,
0.37909237308726584,
0.559006862688822,
0.02432400888128483,
0.030242692015054695,
0.8783865104355176,
0.977036651768512,
0.6146334601899077,
0.7325962151434082,
0.8951265824822033,
0.25208772950546066,
0.46377236336420125,
0.4125381482030229,
0.6257863258176941,
0.8648165753259821,
0.3103089777884924
],
"segment_count": 8
},
"SPEAKER_00": {
"embedding": [
0.08508555365646464,
0.3136976108669114,
0.6722975811189806,
0.4330311712048641,
0.2528376930431464,
0.42502566500882943,
0.9742534163004493,
0.8145815922226697,
0.5460330219701569,
0.6632350322144313,
0.9098850897480485,
0.10485582901012824,
0.26620254723474834,
0.15011879273599305,
0.10925831047511181,
0.14351088162147718,
0.5442526217150648,
0.8729539646025699,
0.2789295114336743,
0.10021151700651154,
0.24004010517052443,
0.6531147740750634,
0.416160843063171,
0.760846410619256,
0.40062798205262706,
0.6007725081964629,
0.17719570362858095,
0.512528351098693,
0.6777481348131166,
0.04999704999052501,
0.13984893958535882,
0.06853322607449408,
0.7333060631426506,
0.3830433901454189,
0.2858059541651834,
0.3390411712325839,
0.07813496796505348,
0.3855271099995946,
0.8087401027395982,
0.15974493185415484,
0.6579147896572494,
0.8074226846179904,
0.6004546578886873,
0.1505599095795801,
0.801259784748063,
0.9837237543711442,
0.9647578358177187,
0.27641669423933757,
0.35350207915691645,
0.7921891809770998,
0.9803536392779462,
0.093494501849682,
0.31876679199009417,
0.03432083157374055,
0.4853745833949751,
0.6245621984160419,
0.26451080301461405,
0.5755329160667354,
0.7633157389952122,
0.8912298525680445,
0.43354123350557816,
0.7609413807923769,
0.0921223756326065,
0.6459713880273883,
0.17504248029745362,
0.41251989061335226,
0.12686922239841414,
0.28937408720941404,
0.5662847679416333,
0.0016332327993338058,
0.3096151565619526,
0.5827058640056105,
0.5774370447089704,
0.8525990598154713,
0.03447309948761401,
0.18269030164923517,
0.34256675203240317,
0.8008517438123373,
0.22526624660365813,
0.8439913987383544,
0.14035008955796735,
0.6483541604555322,
0.42066880970897214,
0.5750517106724148,
0.920918826239489,
0.8172703126246788,
0.07298927429434565,
0.7657473960243679,
0.520903629881517,
0.7067793339918472,
0.9914778837110703,
0.6123975873337665,
0.3982288250886692,
0.26921379471695017,
0.06684203136995004,
0.49745233550648293,
0.26443327961326535,
0.615755926952278,
0.1765477534184685,
0.07686686503972973,
0.261524398294245,
0.83447789978834,
0.09806072452633019,
0.6204576444481869,
0.2773867269711394,
0.7004436565607997,
0.9761296509466689,
0.29855401428465855,
0.9434658213026239,
0.955644983411661,
0.9184186653656319,
0.6527939914317451,
0.8960181190920148,
0.1620669274793407,
0.3149583537902728,
0.1417851784903651,
0.047941148411805745,
0.7173385874270628,
0.37501659404896437,
0.4539498299275575,
0.8139526641652123,
0.39106281749894933,
0.25857621163567646,
0.15024708663749164,
0.1383023071629209,
0.1380260088336902,
0.8865094160360911,
0.21721992389213873,
0.10594539277709214,
0.374798955955294,
0.02032662414551878,
0.932190359107007,
0.8855140243286715,
0.4369416766738623,
0.20222902671667475,
0.5997393123479271,
0.8365994441664459,
0.27168941500861354,
0.07834641784493834,
0.892339730471165,
0.4974417362149417,
0.5808686067378839,
0.6637029692640515,
0.5437986216149504,
0.6458221553011293,
0.6588020114850844,
0.6180630079050616,
0.6388548819717741,
0.19750309916129694,
0.5845120825154803,
0.054863202188400684,
0.40972544474221617,
0.39750296899498905,
0.6470595121200527,
0.4655062924308937,
0.9140152998800155,
0.9471475055498688,
0.7571856746808117,
0.4288608195052859,
0.606435477164203,
0.7097122926333902,
0.916343281381186,
0.6325516230880399,
0.888622461017708,
0.7646117090563397,
0.45701702150293055,
0.09193739380235999,
0.7385187571563885,
0.14604940243628994,
0.8203836603156114,
0.36131081906461326,
0.6675694830259388,
0.6706666049094556,
0.9882812273099121,
0.6303767652060812,
0.15942161551158207,
0.4291937581050915,
0.43015565725745397,
0.24736080705108,
0.08198912921086432,
0.7249930427117014,
0.38359363240865185,
0.2626971525114118,
0.7235714154488143,
0.4348500777535881,
0.619664933799324,
0.23958013389121413,
0.1423438199892475,
0.7511002540663861,
0.2215569891743837,
0.8829879408513324,
0.25396117140051944,
0.05825246007937823,
0.885307591398735,
0.9827495254456535,
0.007492860120589695,
0.6042355096554165,
0.15217161247114463,
0.6288535286946877,
0.7334261146009639,
0.2846050211113351,
0.22019296288183854,
0.2872159972339182,
0.6565139368683708,
0.824924438816915,
0.1814309444289478,
0.16021873238061957,
0.7264419662708554,
0.4137844836171499,
0.49499853363144375,
0.5382818744143086,
0.5714583760720785,
0.6624724344638409,
0.5835685221737039,
0.4288745310831167,
0.011199954459440664,
0.22614020709497473,
0.7455016367578716,
0.2287832951623443,
0.23637017488811563,
0.1662241605781548,
0.31061939158191176,
0.42862536595234435,
0.6058611245184561,
0.251432092580158,
0.43701914319545043,
0.5351654892493816,
0.2659026339927739,
0.3013010871398234,
0.9084257227303089,
0.6725159901207128,
0.21370360602863558,
0.8886916825692946,
0.7735196060337534,
0.9272791730792647,
0.43951251280012293,
0.5954601647188571,
0.300224154222941,
0.46521176006186826,
0.8394851660117031,
0.6758129510310187,
0.23326424722360528,
0.3298220190225998,
0.7730795826532988,
0.3024203365625867,
0.8620458549047867,
0.5280522623525694,
0.9647924797118174,
0.7786923726237656,
0.8228821706477517,
0.28712740855076924,
0.8245079029685681,
0.0394097276535309,
0.36750480067718927,
0.42185443278471246,
0.17429416143793508,
0.31539238436782824,
0.7113311251590432,
0.22775617081136978,
0.2797876092624205,
0.5976301371106556,
0.06978966171698786,
0.36921249575716275,
0.5794484303942175,
0.3060507216985313,
0.8960274252476708,
0.72528733249642,
0.9277125156147016,
0.23288122287998492,
0.3955125215641635,
0.7978264876918022,
0.7772066201898283,
0.158070056030151,
0.9046342836020529,
0.9967889058613251,
0.9317970961971042,
0.9098435894753644,
0.21310146751129544,
0.5784950856592523,
0.9336983343930756,
0.12844237351118537,
0.520183273583788,
0.25441196905800256,
0.5431543192137306,
0.8439970878154661,
0.6649546205527289,
0.3755605660218053,
0.2395049619767632,
0.4825633180655583,
0.9381283013920786,
0.644892431554758,
0.7125005456890641,
0.6060634355496931,
0.7664826777675224,
0.917761726991163,
0.22344054007724867,
0.2744252263005449,
0.7532501668997166,
0.33382896854249267,
0.39223501912165315,
0.46211125654821317,
0.7006640881246253,
0.16800765296591624,
0.9491436394046275,
0.2044601862291684,
0.7281812108295689,
0.7813867599442655,
0.24708905965895567,
0.05640554188995417,
0.4396953678867721,
0.14447302463226486,
0.7562270932393121,
0.12137963220063208,
0.15588610276609582,
0.6224569774514072,
0.7256736483344446,
0.22302187864890122,
0.3310173317121873,
0.5007156038900807,
0.07817152506366876,
0.8528596815135313,
0.18154147349378014,
0.36080012823229934,
0.8058136007630408,
0.16235874209985124,
0.46693496448576843,
0.9415116444411148,
0.05153872708489682,
0.9472999297925163,
0.8054356889807579,
0.550315339710948,
0.10863549189806321,
0.6273027895927822,
0.4369041212738066,
0.020743020746123997,
0.707969041053388,
0.9990795016852569,
0.379739099814948,
0.01906890151917351,
0.5908437035849005,
0.49361661347465846,
0.06571178219896412,
0.664598428483484,
0.7648117541317315,
0.06612579215782421,
0.9397736436714265,
0.4197683610953221,
0.4594189138370608,
0.2938600292247251,
0.6451197501653387,
0.9167820675854164,
0.038054759224493306,
0.021807393157999178,
0.6346083641993714,
0.6883136715291619,
0.27189535065190296,
0.29527190838764117,
0.908743615359161,
0.26853205837844796,
0.191316077545723,
0.9716696208781184,
0.157367509111478,
0.9606911711088927,
0.954233922461315,
0.23412255130011772,
0.3813271151263131,
0.5873629974587247,
0.6791509140748772,
0.33677760019899383,
0.9975140365938108,
0.88340146770722,
0.38816154716928375,
0.24238301569166187,
0.8410939715806457,
0.9561807242509532,
0.6519101407810329,
0.8059565860960154,
0.3211444581250146,
0.035165148085131714,
0.49574766251154967,
0.9197758892489004,
0.6172269572412872,
0.319973217267146,
0.06734412461901151,
0.13147225348505287,
0.6676144348236932,
0.17791493299911565,
0.48319786788660934,
0.39280597140448725,
0.9723400786963553,
0.5680457110887972,
0.45490845167673877,
0.34312193443287275,
0.09731730079334444,
0.34470602518125415,
0.800096773766606,
0.21471123015684146,
0.7678913604692901,
0.6512339092720948,
0.45642362615083276,
0.9715425189721636,
0.8806564155108315,
0.7135072269081412,
0.09692139825182877,
0.04455570381650786,
0.06923033470456275,
0.16928522838594717,
0.0501340892363501,
0.6440855645765987,
0.39113266432804994,
0.24761243486051976,
0.2959465344082416,
0.9681559146928653,
0.11595069836151972,
0.4793742018485694,
0.24180378582454742,
0.09870028174269208,
0.690543269161159,
0.6635403114445604,
0.07781647192575003,
0.6178478884619383,
0.037225566790203946,
0.7678567865497061,
0.025867706579404626,
0.4556575154716612,
0.3137780112906259,
0.30712267991320596,
0.7636071619642224,
0.6611647671677396,
0.12228970424761643,
0.127395836575956,
0.9145674130623136,
0.3759508534416731,
0.34807725096808917,
0.8932661071273494,
0.688249182824861,
0.5450410049445521,
0.2721743564324126,
0.7743575474856892,
0.481878344103011,
0.6149312128417357,
0.8052902952800289,
0.9015275661109996,
0.8795704386382086,
0.04887931046387306,
0.9723485696834588,
0.23378018580423132,
0.024386886515922357,
0.1582388703222477,
0.5992371777839081,
0.22496223438358331,
0.45433500655604964,
0.4917427572639892,
0.8361372489153236,
0.703644944517281,
0.4718312698854269,
0.044890591132147106,
0.46851482295909785,
0.5001858687189599,
0.021741378074226048,
0.10139708436723183,
0.19173656576792086,
0.6399996493393576,
0.13508676313763235,
0.5260982750223708,
0.19561557602327873,
0.7665924401926438,
0.687279296339233,
0.9086018346248493,
0.6484936493473733,
0.07857461294636459,
0.4366927947229525,
0.17271708956867704,
0.49630270158369927,
0.2876949724888376,
0.3198694681226033,
0.9353456175367487,
0.3824031674275936,
0.46117851283791833,
0.765164439331585,
0.38891369542103393,
0.5351467444160642,
0.7219590183797743,
0.9624483975608029,
0.4524595175006104,
0.09904876122098649,
0.08534889743737051,
0.6202887391934838,
0.28603594450071634,
0.582545958042535,
0.23567272497186675,
0.5057805160320105,
0.9302018486859654,
0.46330333035754667,
0.7459735189847647,
0.6192351798416488,
0.24251426927483066,
0.7240900245160065,
0.8212070941502398,
0.5861727609560101,
0.6969767784914412,
0.45758036131815916,
0.04949126582121077,
0.7069567141664763,
0.01974635527878832,
0.9617944510005401,
0.5880012599770953,
0.6948812973203555,
0.14967780146130838,
0.9803223503618442,
0.32598582473001925,
0.7429402525964367
],
"segment_count": 3
},
"SPEAKER_03": {
"embedding": [
0.15937152060968085,
0.9552448051833307,
0.36749304969023655,
0.9961787884473108,
0.9389330763161424,
0.9987243216862794,
0.12634626329105247,
0.757371016587627,
0.1866099899391822,
0.5870557989517033,
0.4203354359646927,
0.1232101070235051,
0.7723571110282962,
0.5973467573471534,
0.5045154269739422,
0.8130401201959736,
0.4069519711717299,
0.6908584625832975,
0.08024465826430904,
0.4034879800949519,
0.9632524740402288,
0.4014922150521413,
0.3963972534090223,
0.5733425930274739,
0.19751760487701564,
0.909108356284355,
0.13759579961925517,
0.9989105282016169,
0.09359272329796098,
0.6083995873270097,
0.3993826682085432,
0.4474621981040193,
0.22059994298495766,
0.29756029661656036,
0.8667598494121659,
0.3716052793207977,
0.9762132789114173,
0.8350456658640396,
0.9718186157046185,
0.3114877301424803,
0.309787551961768,
0.6545646496312353,
0.9275727776534092,
0.8199053757747232,
0.48028683340887424,
0.010654086314614397,
0.5911456075185337,
0.5381752820714456,
0.5833810672845272,
0.04694099442586386,
0.23913218382818213,
0.5097091591492395,
0.7806173352521423,
0.9071908120892266,
0.9240904730402231,
0.9171866897309018,
0.8284997795481003,
0.9124499181452957,
0.5846864673609802,
0.5836211163414651,
0.39231739461911874,
0.24690885797819595,
0.25791138108197376,
0.6232841671980645,
0.7195462913472066,
0.9509081019685632,
0.37313122020789624,
0.446508348547497,
0.8311776810103837,
0.814627849351736,
0.788545558390207,
0.9395286688366479,
0.9068063867307952,
0.32021220774257564,
0.6067536270328047,
0.8185474828993201,
0.8023366201133293,
0.12602323855037567,
0.1828795195126316,
0.7464364793940462,
0.6053211257104096,
0.8492602544787903,
0.12334357389929262,
0.415126865943646,
0.9278835452747056,
0.9349735835507036,
0.3802832905915863,
0.8971448039295247,
0.9373103883876781,
0.9300111067480353,
0.5237263493504855,
0.22653197606449815,
0.7617387375548524,
0.13282566619710356,
0.38504961489587963,
0.9451589686457743,
0.07868482337127514,
0.6248004051496131,
0.6183402410940789,
0.979940579246502,
0.25790042669770796,
0.18246518952269364,
0.675556961238407,
0.8953982446050822,
0.3110337644433854,
0.5157131159928994,
0.9744473890024036,
0.8508549821430265,
0.48730027068923987,
0.777533228748601,
0.995593590208506,
0.2837039631829177,
0.43938307699297496,
0.4620334166990011,
0.723107349119294,
0.09420467485258888,
0.6358792287974563,
0.31726017863820344,
0.5930856036385725,
0.5441751974958483,
0.596162528868908,
0.8707416551484265,
0.11750711181456241,
0.40952358344652195,
0.6613449493091041,
0.2089823679207996,
0.5444114035951964,
0.06336970146907905,
0.3610467807780603,
0.7769675152770383,
0.43796322813378274,
0.4939182688892382,
0.41612909006871357,
0.7523182376138786,
0.20859115527827465,
0.7484461563925388,
0.662622815355134,
0.8239554601995842,
0.852255633481237,
0.7752363840083065,
0.12470946016078477,
0.562773191894562,
0.9990280664878824,
0.4494102536129029,
0.3046107043801658,
0.5988290223128836,
0.19903409997509125,
0.08228282521630947,
0.2020675186738503,
0.043358117348048286,
0.8419077239100892,
0.7540250387927822,
0.046271322976731866,
0.6124091682540836,
0.006137159987272489,
0.15178062693450456,
0.8961505092812037,
0.9204991760650401,
0.5099182302513531,
0.18985461509881563,
0.9926969179162485,
0.6272772781313145,
0.09077336956245363,
0.1818656855562738,
0.8998689136947536,
0.040278751596603546,
0.854872151555447,
0.29171322399974076,
0.9197058545628718,
0.5231534736319071,
0.8488918090714456,
0.5553163340052903,
0.5634259776294583,
0.2760854765726444,
0.7923997649051309,
0.9287718407921433,
0.100083445256405,
0.680136827006188,
0.8457131221657718,
0.2667047535493833,
0.9388271720497359,
0.28860383626150166,
0.27213245118410934,
0.7912675733315343,
0.5710334996693108,
0.9780892928256034,
0.6358918661058398,
0.2160364168164708,
0.018842517733940523,
0.40712350774186135,
0.29471643562288863,
0.8706572141334441,
0.921015038238595,
0.3388423987647393,
0.046720193680717004,
0.4681292967780236,
0.3873975557043752,
0.9086838537441054,
0.013682127465866167,
0.18565119619491688,
0.2290507680468068,
0.1630431130315817,
0.9722318702949183,
0.819752047558142,
0.2105155210352091,
0.9782962365123522,
0.8479273495644828,
0.5562785569675941,
0.07948814638457902,
0.8788196477573362,
0.9383257802184702,
0.9619484050177134,
0.3089158646854421,
0.4786287651548705,
0.4147956990833652,
0.27214863041083226,
0.3226959783328355,
0.9914698825678759,
0.805279151866373,
0.7688957978783749,
0.8066212236271963,
0.5981485863866867,
0.8081713104390088,
0.5055870576063283,
0.40127655905750237,
0.8245271134324578,
0.258245968899807,
0.5741087177641174,
0.8742104378384697,
0.845232971814897,
0.6906603176269961,
0.8392583288050085,
0.4207571041023982,
0.3397403865410441,
0.5543357668129845,
0.06420324415251599,
0.1734590133390691,
0.15174876080277877,
0.8070029375494967,
0.9772222507256696,
0.7819143100326902,
0.8272697764809542,
0.9632778907632717,
0.31128358786273247,
0.015780670810736974,
0.34169242777375275,
0.34746173761943777,
0.9016760028102422,
0.28789843871875376,
0.427836099748939,
0.7895891469708355,
0.8287644199071691,
0.24653800241055912,
0.29579891612606535,
0.4959246481113829,
0.4075180462167367,
0.8630527133201956,
0.3225358985840746,
0.45259995666348507,
0.11047805066246874,
0.15784880860892525,
0.6801965280744687,
0.7144449201613725,
0.07185538866587715,
0.8600874580654525,
0.1413489823593801,
0.495129708473908,
0.8065613445522369,
0.7271263449106691,
0.7761426345882089,
0.5447553128314743,
0.47180386453619627,
0.9470146190851161,
0.6096758105284678,
0.81267382334819,
0.09322968670330378,
0.3179022623748985,
0.5704183023971419,
0.25110673985844134,
0.29876292874579324,
0.7759557637824563,
0.44538802256476395,
0.4202870241589939,
0.6708488159713832,
0.8348573279009393,
0.8944106891613797,
0.26643607903387834,
0.8579276255335873,
0.3092232150279193,
0.4874379314315822,
0.23009728233968074,
0.6583663108921768,
0.191399455417818,
0.024204800756103206,
0.05052911678800842,
0.8763096204232189,
0.5011663364836386,
0.255626335298874,
0.777722629115866,
0.49430541547793305,
0.201801692543503,
0.874152437179804,
0.7661274794318871,
0.3731594141295158,
0.012594608773900617,
0.2664326444122004,
0.20169969925656672,
0.8878303526753131,
0.01341291066570982,
0.7824697402287112,
0.47897618434594436,
0.9077334140031437,
0.07656410276102354,
0.7718449192339395,
0.8245626244687856,
0.48964886652295436,
0.21279254530399083,
0.21790037423402275,
0.08396101805904987,
0.07063697399761626,
0.7414397636706472,
0.6488421862002427,
0.026688916319550504,
0.452100716746036,
0.14946338422838767,
0.19010652703288922,
0.29768081602064045,
0.39835401084549205,
0.3788763696865308,
0.6046856053675782,
0.3059239827222081,
0.4972930449909616,
0.6534382863592881,
0.6221644680494862,
0.7990814611604187,
0.6185988675893694,
0.29067401787891123,
0.6101846359401567,
0.2141742059725007,
0.6399653237078059,
0.7704062179306667,
0.9899118548808317,
0.09483014540544699,
0.7198899252046668,
0.6235369827746622,
0.1014223473827458,
0.45141326259662884,
0.5359354932167162,
0.7847807706063674,
0.013601356447064061,
0.37290970288339054,
0.6697417766181251,
0.7986210400858545,
0.05111199778895548,
0.5917853100786763,
0.23689314125295224,
0.2879330893613068,
0.24319203418107005,
0.0705875583592015,
0.04850965199351387,
0.2965520096334008,
0.22731710712946906,
0.3791001671088987,
0.09116633030951571,
0.003161643532820557,
0.5788324365360623,
0.30018855534700284,
0.34111485277114006,
0.45909751120261677,
0.6845298490060495,
0.7464014957030628,
0.20273062863677793,
0.7016257325646206,
0.8721676867837501,
0.9598072529391136,
0.5140960392476059,
0.4675643632940164,
0.5893066222098934,
0.11724483831312471,
0.9687321725400863,
0.9256292908222438,
0.19274338382847755,
0.50713325296572,
0.3187518192289692,
0.28980451656127826,
0.4712033468705019,
0.9236974836649949,
0.45174746012846156,
0.7526252013603677,
0.8115776661401731,
0.5403652815551301,
0.5349181705120207,
0.855090919115041,
0.4911854392120538,
0.9214222416338209,
0.7096679881390793,
0.6680628258652926,
0.648801426088525,
0.6081793876938826,
0.1386923364023822,
0.9204390458058528,
0.22433730841073418,
0.4674609534047509,
0.67714731810095,
0.09908477312863806,
0.725974084871251,
0.5750920106421858,
0.19082086826761124,
0.18028868373782125,
0.7885382816546854,
0.6366193539437264,
0.16426570150460196,
0.21646585593670464,
0.8860614294487653,
0.3589733270516654,
0.5575908986799576,
0.9519088814620531,
0.7849366514599235,
0.9265922118006196,
0.21615148448978794,
0.8340902611106918,
0.5141396022406695,
0.5160736894040722,
0.6919885048933402,
0.9514442092948073,
0.7410245535042598,
0.3125643404266064,
0.013190787684537186,
0.8709055477757583,
0.31775523412048756,
0.09262426823853842,
0.06319989545671545,
0.24767385544288922,
0.03644509343919555,
0.19139623058816846,
0.9189292770037563,
0.48674316744771695,
0.1096769323200868,
0.196481399342337,
0.05079419858625778,
0.11838912587052153,
0.9148053156331513,
0.6609132982883819,
0.09953053871172568,
0.22417311568300347,
0.7868085526936249,
0.4039290686342272,
0.17384172476775728,
0.48290295972525654,
0.400677550728207,
0.000677905796406475,
0.8380787818171512,
0.27338503613051757,
0.45508435381130075,
0.7724482754353529,
0.880306074882969,
0.6534635148126098,
0.030164561257271072,
0.03203719813946959,
0.029487142012581846,
0.08065135235244192,
0.016610301731561417,
0.13976862035572357,
0.7266805008187736,
0.3805111529662628,
0.7902329582791843,
0.7856534945315925,
0.7369416486167958,
0.0029154495736571917,
0.41757851209219,
0.820570515933666,
0.09741115279825074,
0.2799131076063386,
0.5469564697262916,
0.8820279358788958,
0.2267980524100508,
0.3451442418046603,
0.7678919762995949,
0.8653313691636285,
0.8656216296327993,
0.7655993466330918,
0.8110382635666983,
0.3483236552862772,
0.7452455562958151,
0.08036873990933047,
0.6683539072877462,
0.6889660841314379,
0.293557511557762,
0.26538543223398114,
0.6891193451721862,
0.20893896935290968,
0.9640409362260252,
0.3020024432337386,
0.7480552449644036,
0.022493395429597274,
0.9726127997485071,
0.9143517795114549,
0.2575924109355764,
0.6534797993917613,
0.19905866430220664,
0.14887808574672057,
0.5012114754450577,
0.06320575683269769,
0.4824058782603091,
0.34090626392910295,
0.1809913097791911,
0.04097567728970941,
0.7338913647773149,
0.9969697902003287,
0.1922298615126642,
0.6242470807866466,
0.8075548479348412
],
"segment_count": 1
},
"SPEAKER_02": {
"embedding": [
0.30693486531318637,
0.9640096313400186,
0.2684086241428929,
0.49581683577959423,
0.06780930577772226,
0.12445683905086957,
0.9432985667922728,
0.9526568893694036,
0.6181242329912323,
0.2851412562809267,
0.790745535560756,
0.6793400943441121,
0.3062304082700644,
0.042746741749154715,
0.4668836489491497,
0.8557197239864113,
0.3239480448018255,
0.4322197043073227,
0.9722737343160964,
0.5337069787287826,
0.28325840969291405,
0.9376484164077502,
0.7012569590650781,
0.10079478818219745,
0.71528669691937,
0.5693989084894397,
0.18528557688685454,
0.4155036200911538,
0.623095828807186,
0.09746517757017903,
0.7664420237248116,
0.8946446975398074,
0.009986796769153261,
0.09187913719774166,
0.9240751350055263,
0.5228557226697051,
0.32991403773753647,
0.9442890882748374,
0.6294399206536452,
0.9969902637859359,
0.6318445090369808,
0.7176367744728134,
0.5969741426149243,
0.33495116395632585,
0.20531306114169656,
0.6288526132481347,
0.6062007473371558,
0.729029049677363,
0.6486948089385544,
0.838707735395433,
0.6760169363572159,
0.4280507895533734,
0.6091658825230094,
0.9951129286906156,
0.8709173863010102,
0.25566172109260743,
0.30407502978284806,
0.90559975965537,
0.6750418500614196,
0.562165332414408,
0.004782300345209323,
0.8231313239591618,
0.7757873936231308,
0.9834549740406056,
0.273442440676794,
0.18630004181954707,
0.14048736666290051,
0.9308155970527925,
0.7029064267764018,
0.809180789069052,
0.050243691513942146,
0.17302196101285028,
0.6930558767689353,
0.9050321620806125,
0.39239132488786044,
0.7402117136544192,
0.4672804275117476,
0.30346356463508717,
0.9491299491000043,
0.14828166611234173,
0.005091841800398678,
0.649267190656875,
0.9295484373567329,
0.8101083461904254,
0.025430765894305263,
0.23757990511221905,
0.6683207600982506,
0.7291728997263318,
0.3148027349661947,
0.13238683108340799,
0.9190443784027383,
0.9424674715910593,
0.1200559962303065,
0.3576944459525183,
0.8488427324546388,
0.2258032747873312,
0.8434292976287836,
0.26104991900923735,
0.5246822700953931,
0.24467387893955628,
0.42271746067681304,
0.5768272452020484,
0.271278037209138,
0.27364319854678865,
0.3495172702031134,
0.3441316092516551,
0.05523568373078891,
0.5927879033829769,
0.42550308704301865,
0.8691558538253691,
0.06076301914233273,
0.7992143310777398,
0.29030352747072297,
0.5773526253252316,
0.2222043361152819,
0.3660429010709799,
0.3001778677885206,
0.38942101992703015,
0.182874731036881,
0.9023175678301325,
0.04469024636830177,
0.4123731704906859,
0.862037311627644,
0.8639490575219484,
0.7324007009321705,
0.3240038488970981,
0.13467208916358264,
0.24180715701474942,
0.4489030275204112,
0.5314631180967134,
0.23159903217253353,
0.7613133663283912,
0.5774432540498655,
0.9398519636442126,
0.38023764129251436,
0.29354750762596393,
0.005379241470578222,
0.2642445979911886,
0.406950923816523,
0.31124625494859315,
0.6024941471999972,
0.6975125174123782,
0.168961828933342,
0.8206236927503608,
0.7871880479724421,
0.5493724378880075,
0.43590141548184913,
0.7023422337889831,
0.13346281114871295,
0.617533547959616,
0.8150119454556944,
0.5894165696133513,
0.9003084524523675,
0.3550423925470073,
0.2232559499735134,
0.9396450136559736,
0.2864123645055663,
0.4914877099729035,
0.8744660728912775,
0.7646231801507782,
0.4451391934302461,
0.5662345552240278,
0.5087364476447704,
0.7545016964539013,
0.8320357297599205,
0.21472865720313217,
0.2414023885580463,
0.1842990380651338,
0.29905298292163185,
0.6888617571373816,
0.8698155577702497,
0.1889180625818645,
0.36613251759263665,
0.40203116417973284,
0.03592746791347645,
0.020863895238501518,
0.9928132369591794,
0.8664775373324959,
0.17616272349411144,
0.5876285451664156,
0.8742329742527101,
0.19475911725148676,
0.045665579683630386,
0.41207976331888163,
0.9352167457522431,
0.7541618301695228,
0.023230756649030515,
0.3165518400369858,
0.11206697297161328,
0.4712851757023243,
0.314101474431537,
0.012441295968388388,
0.8398112680701443,
0.6599008597598603,
0.9033050921449445,
0.24593139495415917,
0.8743209445704421,
0.7804992158182298,
0.6333533378839051,
0.9207617880354186,
0.023361421147960804,
0.8523354193768068,
0.5521400244623073,
0.2921874399304941,
0.7138062071519337,
0.18497280150764395,
0.728215195405716,
0.04978871433409637,
0.9971573695905062,
0.24784893818915155,
0.9893976874578629,
0.44787206821023307,
0.7799375105802012,
0.9662244387086028,
0.5674290777795237,
0.3895940996792907,
0.7702458161494504,
0.8584281222384057,
0.519098703916568,
0.5095770482679528,
0.06745004221782569,
0.7453011916765883,
0.3759127713854977,
0.49482502098845915,
0.1615614237846048,
0.46919541427108435,
0.354425692404404,
0.7886707316608692,
0.15152483404505546,
0.6792115933639717,
0.9146460422358522,
0.023890473737761764,
0.08272605554097778,
0.47034097208882053,
0.895376592559822,
0.7592397936957771,
0.33484861567329127,
0.6335966715451986,
0.9427112957950755,
0.8422589639511967,
0.2376657693815143,
0.30575555398034815,
0.758257898715414,
0.5490213372054714,
0.35694169045927004,
0.2521943771048958,
0.02058784368923461,
0.2629392953173505,
0.8380906998680027,
0.37505978010382246,
0.665568334471709,
0.2615444042125359,
0.696006924636629,
0.08847423915341246,
0.8841051385404953,
0.08445938985778467,
0.4925898133817781,
0.7041264423566896,
0.24301957659370677,
0.6325756786655962,
0.59459591600108,
0.9289920901171934,
0.28877367753604954,
0.48559132629105217,
0.025737157786149156,
0.3215109300372031,
0.20503898711947466,
0.9661539204823306,
0.40204680143430904,
0.6291132884066518,
0.5497692115745547,
0.6438141853099787,
0.8544258522903955,
0.9603554702756998,
0.19109252261597298,
0.034023821180269365,
0.9331661687663897,
0.4433393487568732,
0.9315065888770283,
0.5548314118709778,
0.7488118351487187,
0.36312006952765186,
0.12262500398993081,
0.33077517173145277,
0.19904192932393105,
0.7355913070831602,
0.8149485168500514,
0.40778243068397557,
0.5148834525942518,
0.15979806799796492,
0.59173213163104,
0.6066476326876001,
0.402002375155346,
0.7674338911913315,
0.49813067912854214,
0.9772374821031388,
0.8784773732366649,
0.5644356940484038,
0.927178545749541,
0.7348197490285813,
0.5409794545895121,
0.6902546969028817,
0.19258328814362535,
0.5384050394382845,
0.673017588574522,
0.5178495176517152,
0.006502021986546369,
0.7910203544888321,
0.7080099287398866,
0.39614022541998484,
0.36552874167211025,
0.43228440509627786,
0.2763489049770448,
0.2871123735506066,
0.8774391295387418,
0.9149568160318332,
0.26255028991103735,
0.9443293463462583,
0.11758704071169046,
0.38770505169394087,
0.53524706294688,
0.402468130630123,
0.9183212660121304,
0.3567848575684509,
0.22743822837883976,
0.5117844117137498,
0.7557739949563237,
0.11270465414735653,
0.9223866493024723,
0.38013989815199567,
0.9396104513889658,
0.7829728412671231,
0.5186572449044561,
0.8288804016877104,
0.3060970260902821,
0.10986011209881186,
0.7084616486349806,
0.43894824912318997,
0.9527874712923003,
0.5383701606068632,
0.6610517315864288,
0.5090116074830261,
0.14068717478875326,
0.4588862113285128,
0.3269277079855616,
0.02351437692290037,
0.8468425531172806,
0.650800644043556,
0.5077437952701417,
0.09820854428035608,
0.5955942058753865,
0.17899413934018715,
0.7704497042765056,
0.7535201998654312,
0.2785806106208012,
0.12005010314039921,
0.5382913863933546,
0.8551200608157558,
0.03568677950221344,
0.2407816155815703,
0.5326007756346247,
0.7010207658319024,
0.9046774664391303,
0.8726952783837065,
0.9440295294060853,
0.08986292738625545,
0.3820158423393514,
0.6244599476135808,
0.5524684562370841,
0.47930847884400485,
0.7166973796266359,
0.025942169967979378,
0.8679756808841189,
0.3550040764373742,
0.9004385028620769,
0.0031460269812378927,
0.345223264657037,
0.12729064831419157,
0.3814100036231628,
0.05463857186233978,
0.8270300838851692,
0.5170167194632794,
0.3668818946121384,
0.5726170129655945,
0.6810287586256978,
0.4338475953392301,
0.031232784616085807,
0.6252868981414528,
0.09787642833985122,
0.6646977265163754,
0.38833722115119185,
0.15107276553386761,
0.4010850335473196,
0.7179645747262199,
0.3714385842990233,
0.22483762875831048,
0.2124494171394573,
0.9956885278050217,
0.3081696229034232,
0.4814149816020641,
0.1951583927162419,
0.867303275750641,
0.840345242750179,
0.008942618068303876,
0.8376227496750901,
0.8548070457625208,
0.46282992151971747,
0.5678477053159195,
0.632124013865878,
0.09463650955715808,
0.8458916000236912,
0.1726479793533735,
0.5862615029213757,
0.6903028504116351,
0.08169665838306783,
0.9257775995922534,
0.8106760432371508,
0.8737053323196294,
0.7182206539829299,
0.653565961486485,
0.7461688046108759,
0.5835740954779061,
0.8052858137647212,
0.9430466384796767,
0.3380016345338468,
0.6122060318846471,
0.5484299663835633,
0.31266002019588535,
0.5441687828695053,
0.2855213715786843,
0.47470222917818927,
0.563606167220064,
0.7935254596662529,
0.9770821196829531,
0.5568273422542203,
0.801588290722673,
0.464652545795881,
0.6508196679471502,
0.5173949359049613,
0.6608540877692145,
0.25729676357280296,
0.2643197635200889,
0.9145111762468764,
0.9041170333881646,
0.8107053812326168,
0.12609854424174505,
0.644034240082284,
0.23233509062013735,
0.3735769686462671,
0.15013550152276267,
0.5437099751940339,
0.20038712893591337,
0.5062276924278812,
0.7214960451004309,
0.9128633678006438,
0.3960849999689424,
0.4263698372486803,
0.40576874518949,
0.022257628039816457,
0.20235134051713388,
0.5313065941195,
0.842689153144347,
0.4566028203304261,
0.2557746253254902,
0.8009224003304019,
0.7659302217211844,
0.20085889176182992,
0.8306871378435899,
0.4448666276614911,
0.3735900482525173,
0.6254461422087189,
0.48783098300857175,
0.8778071512121128,
0.47177984738272605,
0.682603935973131,
0.929169715210128,
0.8892250780460451,
0.4111522375531058,
0.13365288520728913,
0.3120380035033803,
0.7984864032017381,
0.24015502437426417,
0.5457497036761529,
0.890007500944586,
0.5685793153960313,
0.6990666107069509,
0.6892292364953263,
0.5673248332133092,
0.1413293658946696,
0.8982356945551145,
0.12549336592614224,
0.2716253508049393,
0.8077938258575469,
0.2915558081948799,
0.60598949677564,
0.7414759866434346,
0.2485467603996655,
0.3003699806254412,
0.6402764275641949,
0.2357576391962123,
0.5662213224449603,
0.8960012854024526,
0.9502092269488953,
0.2413110393027983,
0.29916318200428726,
0.48983065074373056,
0.6354006743965406,
0.9718653551835948,
0.9052413614070606,
0.9816567574015488,
0.45447833995008524,
0.9077139907437559
],
"segment_count": 1
},
"SPEAKER_04": {
"embedding": [
0.5428955550212569,
0.4811925797574774,
0.8931297431659411,
0.032599243724867555,
0.6118148562727891,
0.9579700352730007,
0.9435378601180437,
0.06470087759070053,
0.42432946877104205,
0.7493599395036095,
0.5925125792534616,
0.3987886688009833,
0.3026780721979765,
0.8054308701450139,
0.9029220730528197,
0.2680596451245991,
0.7956153855144289,
0.2517390594013633,
0.09981469360355699,
0.4677149244329397,
0.6055935039555624,
0.6939344301745826,
0.9580206201401336,
0.7117515254982291,
0.6641834031710269,
0.01371147916748805,
0.34881094940011403,
0.009082384730879078,
0.5931870205811106,
0.2679282116726315,
0.14173205573549075,
0.20961905810742065,
0.6972514658665034,
0.5600936342517069,
0.7955419209547546,
0.23132871054546988,
0.9769465857392976,
0.129205241819488,
0.5860262661467794,
0.732752303746544,
0.886210619893177,
0.5747763283607812,
0.1872878200222019,
0.3669502339785533,
0.8283713544061021,
0.8439465468632537,
0.28576133047233343,
0.8949411743462041,
0.08568629038658881,
0.6475821137255173,
0.32494055384143317,
0.8851712152422426,
0.3965940860109346,
0.7783644316103332,
0.7722797116498079,
0.14884675688203497,
0.662928129579774,
0.8854343221183859,
0.609935053667457,
0.9529423630072859,
0.9709908964945261,
0.19347663055350228,
0.3360760116947875,
0.30253220019248794,
0.18993450407491919,
0.3728031205964508,
0.19724744623772694,
0.5957787883970369,
0.9732961285258773,
0.11822469500938004,
0.3429205881370644,
0.3836000859310691,
0.5204419082621473,
0.42603202431877996,
0.9734516215066156,
0.24588329458533598,
0.9243888837972178,
0.6302166623128004,
0.14696220104546587,
0.30598109977197485,
0.09083313530345372,
0.3045181148676259,
0.1783011735881711,
0.8044141709075602,
0.4032777161149881,
0.36750538083353956,
0.08173137879627212,
0.04675355596783226,
0.6234191413534016,
0.5621599115247615,
0.8386231104871891,
0.30769118168167664,
0.7002307539243074,
0.3810542667152014,
0.6526748375062686,
0.13590925384801655,
0.23504540360469228,
0.9048628514284119,
0.7599013746605235,
0.8163580595942684,
0.5487330494554266,
0.44178575690111566,
0.9335089873594935,
0.538806910222011,
0.7821989555274611,
0.3583645650932874,
0.10603271216029797,
0.12033907358697227,
0.9308621076752349,
0.20182693847380717,
0.9594523229610212,
0.7210459008572185,
0.39566803150548513,
0.07448442376088116,
0.9214645561430455,
0.5043065427303102,
0.9200760655933048,
0.6366730683551096,
0.6883647267412155,
0.7971830994232355,
0.6732511057725167,
0.9226072750115429,
0.7942337478293406,
0.8979108982416174,
0.2259606862813356,
0.49457218367526967,
0.8849300894079407,
0.6621502710142392,
0.7765243880593865,
0.47093827072966987,
0.5627251504765322,
0.8570597189652105,
0.21730645542791072,
0.6097396385225732,
0.0421003637293228,
0.2400475784559677,
0.03595562438788236,
0.7460269624909032,
0.6690726398623906,
0.5482973061843436,
0.871010964672239,
0.1911682544390646,
0.8008665859464233,
0.47998839011877603,
0.10837882947075361,
0.7449633703131899,
0.63205485663963,
0.7033754164672902,
0.6073903158041939,
0.3306947997033711,
0.6764835929584209,
0.04428985518823203,
0.4444639359157381,
0.35122015486830527,
0.10757864062340328,
0.19355722499957073,
0.6695875129987889,
0.5294688226879997,
0.5117202072983715,
0.8776753459023777,
0.3503662822829209,
0.766608509239275,
0.6065610603461016,
0.966763264696648,
0.5784166868116662,
0.9420520074067923,
0.8346055483395265,
0.6990132379749143,
0.5644439193312416,
0.03321346741889497,
0.9678836784253284,
0.048508092090002064,
0.2775161053873523,
0.17932105369694906,
0.7461677668051075,
0.03184167649510061,
0.9296252843010956,
0.21119309931435315,
0.749759369209233,
0.9211603109599675,
0.11142608547930277,
0.9789428606023572,
0.16555960747459875,
0.5440479264251249,
0.9129555244369797,
0.16256314238321212,
0.5024745373712445,
0.19213358987673945,
0.8629837208706707,
0.6463887784984945,
0.15212691742887186,
0.2820745678791179,
0.4881410922206625,
0.5782627469923536,
0.8793309270064242,
0.6187806588457897,
0.5903159243734534,
0.9525647490371936,
0.253626628668998,
0.16052138695676266,
0.09458763096203093,
0.3199489627920453,
0.669767165969647,
0.5772280454849439,
0.7040082556256262,
0.19830636970262017,
0.5720410278234477,
0.8003496647083371,
0.2518569935286289,
0.6433159221464931,
0.26297164569690346,
0.407494587601683,
0.4398564170287256,
0.46260481137468346,
0.7526013418314977,
0.9318439104320452,
0.9299930669676958,
0.9567839297008572,
0.7452363445676308,
0.7471961512041781,
0.35949167645830205,
0.7158716208063082,
0.6486886219426632,
0.23058720094290963,
0.4613945259506227,
0.3994402326733394,
0.8770529257737422,
0.23078719893430477,
0.5414636263982714,
0.3147608984643717,
0.7659924451012569,
0.31095763201445115,
0.7712063280058246,
0.9852666187006633,
0.7281670679347247,
0.9038850780500689,
0.14416969229060195,
0.8535932437369063,
0.4670150290403572,
0.060142967885255305,
0.12252385881751715,
0.0027519669097758603,
0.9258070869460582,
0.13316889995562442,
0.3922444661883058,
0.6408440335707076,
0.8711921003393184,
0.6823211126411127,
0.27305542991501563,
0.8653977413637558,
0.22916209559720502,
0.2761782049205702,
0.4308860309177811,
0.7411212793471543,
0.3139529663919437,
0.9121719503172429,
0.5710852259148339,
0.4322662603469536,
0.4268751217016894,
0.150597279538628,
0.8759674929252251,
0.1823570172679696,
0.6668576724147618,
0.7925873677880777,
0.7891692102118915,
0.2853767955054638,
0.9652232215725585,
0.647376808458671,
0.32309610753580553,
0.7692281613979113,
0.8204656006657459,
0.5093707267336569,
0.7231760380143487,
0.8487967088946227,
0.6749993125096427,
0.7564221494167127,
0.5004679004901814,
0.6192218548894597,
0.22212148577056723,
0.650591587154947,
0.7490760224903342,
0.5566873213028385,
0.022104332295119655,
0.5913278115521408,
0.08680029827719593,
0.6272317109993232,
0.5761469212731701,
0.5032745724855484,
0.49848753152471326,
0.04397621575125432,
0.5133987298917666,
0.8846359450193584,
0.3732566189742822,
0.6932158164374559,
0.5971666473076088,
0.6397969502681949,
0.9805324126120355,
0.3002190231798565,
0.07899348897997915,
0.15516777417228866,
0.9485095312275672,
0.9600145681410246,
0.16398863812070374,
0.9776322288611311,
0.6392247036373254,
0.5595082939654489,
0.40268334473082723,
0.5356172268195959,
0.7091659110887778,
0.18200286830193957,
0.15046641450819975,
0.06116440912031662,
0.11228117659129622,
0.6978405089492571,
0.35190434599533527,
0.6947273271992015,
0.003972618291925856,
0.25500479863841896,
0.22717877206732107,
0.2467631012145547,
0.29790622547016565,
0.5478423158298327,
0.17777341544969105,
0.9553897875005106,
0.4279274013284635,
0.5598854532116772,
0.6589870350202497,
0.009968362450700985,
0.2625004288611744,
0.850372898250663,
0.1217900927758192,
0.9741119422817843,
0.7443716258882732,
0.07623728834623067,
0.7638031177596345,
0.11705873919087662,
0.275741270978597,
0.46379709520888646,
0.09657735712341797,
0.6216530402424186,
0.13694882060912894,
0.9700932427961968,
0.4667043022617845,
0.9918663267613491,
0.3175535874599713,
0.1052831361993537,
0.9416140513550314,
0.6619009810932636,
0.94247428467554,
0.11586979700218059,
0.5372761624660518,
0.1714695404159522,
0.4788802454364445,
0.5556531073406256,
0.7412494505480598,
0.3612756578517369,
0.41662300804497077,
0.24596283255077522,
0.20826770522364102,
0.15091631579918074,
0.8987585339673333,
0.7155350846282144,
0.6164607301391412,
0.058319484883833095,
0.7754867589419902,
0.800544357789766,
0.3756491993399549,
0.514638295372858,
0.7696376110106659,
0.6930608937553109,
0.38102462945457005,
0.7430201250826731,
0.7208204615795752,
0.30751758434691223,
0.9168862354267758,
0.4852468075935368,
0.43690573238363695,
0.7895358920640231,
0.8910302723663176,
0.13568686153890352,
0.6513909322093944,
0.6369791662051666,
0.5573393922807386,
0.2246400673880692,
0.8348990785805338,
0.733067603530911,
0.15996673107638748,
0.28711664122541514,
0.4758171867343103,
0.9901175612458879,
0.3265529783209309,
0.7002808669190663,
0.8125360953011005,
0.8456142089579395,
0.4951567606885572,
0.12009616875061269,
0.3164868878650392,
0.13937029329725004,
0.11159194268503903,
0.25656641825862814,
0.7255663581229255,
0.7532753241214091,
0.6695393096945621,
0.07511820183208251,
0.4657962007386687,
0.6893597571164485,
0.9041275821771158,
0.01629652981782337,
0.9695244816183236,
0.9065480274424421,
0.4409990662842249,
0.7021645839346805,
0.23979982841469039,
0.6797089077439981,
0.35822818361665754,
0.08010574305808527,
0.235091453918285,
0.4185426934201214,
0.17573714032186027,
0.07850384110785913,
0.9397549559387772,
0.22619573569691964,
0.6219248307370893,
0.9234214561376066,
0.559601974281744,
0.23885756778571754,
0.21367335711190671,
0.33399404694084855,
0.6263912067784574,
0.6486366880301973,
0.8338983496724749,
0.3928517363271279,
0.13266627149062882,
0.012842695568620277,
0.9584078307700631,
0.0005360415774063876,
0.313246115005415,
0.9791250731956885,
0.7721929189563236,
0.1894610293069936,
0.50035531079888,
0.7640214415522385,
0.9045736950186247,
0.8966936764215863,
0.6093429118773985,
0.24139652292654523,
0.6636280703837922,
0.3800713105156426,
0.4510005098731331,
0.5429235324140941,
0.4108564346113833,
0.6988622545122835,
0.33063904129162214,
0.09207375661961192,
0.3447873990888253,
0.34755463930593555,
0.6671310483474054,
0.7321767778853508,
0.5553042562359861,
0.1919574982320783,
0.34450195001123307,
0.5663686606210612,
0.40073034064186763,
0.44598917192259113,
0.6759336248763288,
0.7519682999824256,
0.23359202457069483,
0.8224339626490929,
0.11779790294319514,
0.3042929344103442,
0.2863953817723115,
0.7400855575282222,
0.5996865522002871,
0.5515837514408626,
0.5736909842184966,
0.21180834393954684,
0.735422395932794,
0.5428469965873964,
0.1531860745125173,
0.4068281603095165,
0.5439680069812004,
0.23818170571000985,
0.5795530310034225,
0.003337071365836608,
0.234564518290869,
0.42751577110732286,
0.2629104931400007,
0.3915813904366686,
0.8869029693726216,
0.9061148223841294,
0.8496382235353009,
0.016575721295285062,
0.6120539447149624,
0.5568689882000161,
0.6695202674195412,
0.8000979076741219,
0.9859252288963339,
0.07930495349382694,
0.5873521998063851,
0.636495013240553,
0.5041291741221395,
0.4787937448044909,
0.7084698834841994,
0.8931975224834071,
0.6880109455747883,
0.7057446422191647,
0.8487249314966459,
0.01823899986471411,
0.1475061896730041,
0.2995633932221681,
0.6789112026509133,
0.5102768937633293
],
"segment_count": 1
}
}
}
11111 ...
|-转 通义之旅2
补全services/audio_processor.py 文件里 def get_matched_audios()函数的的代码 ,如果没有现有切分音频文件的扩展,告诉我可用的扩展,我去安装。
再优化下 get_matched_audios() ,mixed_dialogue_segment_pass_list 改成2维数组,['similarity'=>'0.2','path'=>'...'],如果没有相似度超过阈值的(比如阈值是0.8),按切分音频的数量,比如切了10个,找相似度最大的2个(如果第一是0.6,第二是0.3那就只保留一个),切了20个,找相似度最大的4个。最后把符合的合并成音频。 20250825 03:16
find_matched_segment()
遇到各种问题,为了搞音频处理。 20250825 03:00
请注意,只修改函数get_matched_audios(),只解决导出的保存的音频声音变慢变低的问题,其他的不需要优化,如果有必要可以改 实现完整的音频处理函数,集成SpeakerExtractor类
async def process_audio(file, config_value, whisper_model, device): 函数,只解决导出音色改变问题。
通义:我理解你的需求。你希望我专注于解决 get_matched_audios() 函数中导出的音频声音变慢变低的问题,以及实现完整的 process_audio 函数。
首先,让我检查 get_matched_audios() 函数中音频保存的部分,找出可能导致音频变慢变低的问题:
20250825 0537
声纹识别找到了合适的模型已经可以用了,但是输出的提取的音频各种音色变了,有了杂音等问题。 20250825
我现反馈个情况,你现别改哈。输出的音频现在音色正常了,但是有杂音和电流声。我在网上查的原因分析“”出现「原来干净、合成后却带杂音 / 电流声」的 99 % 都是下面 3 类原因,按出现频率从高到低列给你,并给出可直接落地的排查 / 修复代码。
浮点溢出 / 量化噪声(最常见)
• 你在 get_matched_audios 里把 int16 直接除以 32768 变成 float,
• 之后又用 torchaudio.save 写回 wav,但 没有归一化到 [-1,1] 以内 或 忘记转回 int16。
• 结果数值越界 保存时产生爆音、电流声。
修复(两行就够)“ 你觉得对不对。切记先别改代码。
20250825 0553...
|-转 目标说话人声音提取模型训练的思路
我有个现有的代码用于从多人说话里提取目标说话人的声音(不需要完整提取,不是用来记录会议中某说话人的说话内容的,是用来RVC训练的),现在有个问题就是提取出来的声音偶尔还会有别人的声音,大概占比10%,我想把这些也去掉。于是我想到办法,把提取出来的音频,在和目标说话人的纯净的人声embedding比对,看目标说话人在音频中的说话时间占比为,如果占比很高的话,比如超过0.9就保留,否则二次提取目标说话人的声音。我想把这个占比的结果做成反馈机制,类似监督模式,整个流程变成一个模型训练。之后直接用训练的模型去做特定说话人的人声提取。
我有个现有的代码用于从多人说话里提取目标说话人的声音(不需要完整提取,不是用来记录会议中某说话人的说话内容的,是用来RVC训练的),现在有个问题就是提取出来的声音偶尔还会有别人的声音,大概占比10%,我想把这些也去掉。于是我想到办法,把提取出来的音频,在和目标说话人的纯净的人声embedding比对,看目标说话人在音频中的说话时间占比为,如果占比很高的话,比如超过0.9就保留,否则二次提取目标说话人的声音。我想把这个占比的结果做成反馈机制,类似监督模式,整个流程变成一个模型训练。之后直接用训练的模型去做特定说话人的人声提取。audio_processor.py里的主函数asyncdefprocess_audio(file,config_value,whisper_model,device):和defget_matched_audios(target_audio,负责的是从多人说话里提取目标说话人的声音。t3.py这里的代码是用于把提取出的人声的人声再次和目标人说话人比对,看时间占比。现在要解决把整个流程设计成模型训练的模式。...
|-转 python报错 can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
ERROR:app.services.audio_processor:保存音频或其他操作失败: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
ERROR:app.services.audio_processor:处理音频时发生错误: 保存音频或其他操作失败: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
ERROR:app.api.audio_router:处理音频时发生错误:
Traceback (most recent call last):
File "D:\python\fastapi-speaker-extractor\app\services\audio_processor.py", line 677, in process_audio
target_embedding = get_or_create_target_embedding(target_audio_path, CACHE_DIR, verification)
File "D:\python\fastapi-speaker-extractor\app\utils\audio_utils.py", line 110, in get_or_create_target_embedding
np.save(cache_file, embedding.numpy()) # 存为 numpy
TypeError: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
During handling of the above exception, another exception occurred:
# =========================================
# 4. 函数:获取目标 embedding(支持缓存)
def get_or_create_target_embedding(audio_path, cache_dir ,verification):
os.makedirs(cache_dir, exist_ok=True)
with open(audio_path, 'rb') as f:
file_hash = hashlib.md5(f.read()).hexdigest()
cache_file = os.path.join(cache_dir, f"{file_hash}.npy")
if os.path.exists(cache_file):
print(f"✅ [缓存命中] 从缓存加载目标说话人 embedding: {cache_file}")
# 从 .npy 加载的是 numpy,需要转为 Tensor
embedding_np = np.load(cache_file)
return torch.from_numpy(embedding_np) # ✅ 转为 PyTorch Tensor
else:
print(f"? [缓存未命中] 正在提取目标说话人音频的 embedding: {audio_path}")
embedding = extract_audio_embedding(audio_path ,verification) # Tensor
# 保存为 numpy 到缓存
np.save(cache_file, embedding.numpy()) # 存为 numpy
print(f"? [缓存保存] 已保存目标说话人 embedding 到缓存: {cache_file}")
return embedding # Tensorkimi瞬间解决了...
|-转 Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!
根据你的问题和代码分析,这个错误是由于PyTorch张量和模型在不同设备(CPU和GPU)上导致的。我来为你提供几种解决方案:
## 问题分析
错误的核心在于:`Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!`
主要问题点:
1. 代码中存在多个模型加载点,设备管理不统一
2. 音频张量加载后未明确指定设备
3. SpeechBrain模型和PyAnnote模型可能使用了不同的设备配置
## 解决方案
### 方案一:统一设备管理(推荐)
修改代码以确保所有模型和张量都使用统一的设备配置:
[services/audio_processor.py](D:\python\fastapi-speaker-extractor\app\services/audio_processor.py)
能不能专门构建一个app/utils/device_middleware.py一个中间件,让所有项目下运行的程序统一走中间件,然后中间件统一设置device,device_middleware.py我已经创建
创建一个新的设备管理中间件,用于统一管理所有模型和张量的设备分配
[device_middleware.py](D:\python\fastapi-speaker-extractor\app\utils\device_middleware.py)
修改audio_processor.py文件,使用新的设备管理中间件
[services/audio_processor.py](D:\python\fastapi-speaker-extractor\app\services/audio_processor.py)
修改audio_utils.py文件,加入设备管理中间件的支持
[audio_utils.py](D:\python\fastapi-speaker-extractor\app\utils\audio_utils.py)
修改embedding_utils.py文件,加入设备管理中间件的支持
[embedding_utils.py](D:\python\fastapi-speaker-extractor\app\utils\embedding_utils.py)
修改model_loader.py文件,加入设备管理中间件的支持
[model_loader.py](D:\python\fastapi-speaker-extractor\app\utils\model_loader.py)
修改onnx_model_loader.py文件,加入设备管理中间件的支持
[onnx_model_loader.py](D:\python\fastapi-speaker-extractor\app\utils\onnx_model_loader.py)
修改__init__.py文件,确保设备中间件被正确导入
[__init__.py](D:\python\fastapi-speaker-extractor\app\utils\__init__.py)
修改audio_processor.py中get_matched_audios函数,确保音频处理时使用统一的设备
[services/audio_processor.py](D:\python\fastapi-speaker-extractor\app\services/audio_processor.py)
修改audio_processor.py中的process_audio函数,确保设备一致性
[services/audio_processor.py](D:\python\fastapi-speaker-extractor\app\services/audio_processor.py)
现在我已经为你实现了一个完整的设备管理解决方案,以解决你遇到的设备不一致问题。以下是我所做的更改和方案说明:
### 方案概述
我创建了一个统一的设备管理中间件([device_middleware.py](file:///D:/python/fastapi-speaker-extractor/app/utils/device_middleware.py)),用于在整个项目中统一管理所有模型和张量的设备分配。这样可以确保所有计算都在同一设备上进行,避免了CUDA和CPU设备混用的问题。
### 主要修改内容
1. **创建设备管理中间件**:
- 新增 [app/utils/device_middleware.py](file:///D:/python/fastapi-speaker-extractor/app/utils/device_middleware.py) 文件
- 实现了 [DeviceMiddleware](file:///D:/python/fastapi-speaker-extractor/app/utils/device_middleware.py#L14-L83) 类,用于统一管理设备
- 提供了设备移动方法,确保所有张量和模型都在同一设备上
2. **修改音频处理相关文件**:
- 更新 [audio_processor.py](file:///D:/python/fastapi-speaker-extractor/app/services/audio_processor.py) 使用设备中间件
- 修改 [get_matched_audios](file:///D:/python/fastapi-speaker-extractor/app/services/audio_processor.py#L127-L302) 函数,确保处理过程中设备一致性
- 修改 [process_audio](file:///D:/python/fastapi-speaker-extractor/app/services/audio_processor.py#L719-L801) 函数,使用设备中间件的设备
3. **创建辅助工具函数**:
- 在 [audio_utils.py](file:///D:/python/fastapi-speaker-extractor/app/utils/audio_utils.py) 中添加设备管理函数
- 在 [embedding_utils.py](file:///D:/python/fastapi-speaker-extractor/app/utils/embedding_utils.py) 中添加嵌入向量设备管理函数
- 在 [model_loader.py](file:///D:/python/fastapi-speaker-extractor/app/utils/model_loader.py) 中添加模型设备管理函数
- 在 [onnx_model_loader.py](file:///D:/python/fastapi-speaker-extractor/app/utils/onnx_model_loader.py) 中添加ONNX模型设备适配
### 方案优势
1. **统一设备管理**:所有模型和张量都使用同一个设备管理器,避免了设备不一致的问题
2. **易于维护**:当需要更改设备时,只需在中间件中修改,无需更改所有相关代码
3. **兼容性好**:支持CPU、CUDA等多种设备类型...
|-转 腾讯元宝推荐的项目结构(音频处理项目)
fastapi-speaker-extractor/
├── app/
│ ├── api/
│ │ ├── endpoints.py # 一般的 API 路由
│ │ ├── audio_router.py # 音频处理相关的 API 路由
│ │ └── __init__.py
│ ├── services/
│ │ ├── audio_processor.py # 音频处理逻辑,如提取、相似度计算
│ │ ├── audio_dataset.py # 自定义 Dataset 类
│ │ ├── audio_model.py # PyTorch 模型定义
│ │ ├── data_loader.py # 数据加载与预处理逻辑
│ │ ├── train_model.py # 模型训练逻辑
│ │ └── __init__.py
│ ├── schemas/
│ │ ├── api_schemas.py # Pydantic 模型定义
│ │ └── __init__.py
│ ├── utils/
│ │ ├── custom_logger.py # 自定义日志记录器
│ │ ├── helpers.py # 其他辅助函数
│ │ └── __init__.py
│ ├── main.py # FastAPI 应用入口
│ ├── __init__.py
│ └── static/ # 静态文件(如需要)
├── data/
│ ├── mixed/
│ ├── target_pure/
│ ├── extracted/
│ ├── embeddings/
│ ├── labels/
│ └── models/ # 训练好的模型保存位置
├── tests/ # 测试代码
│ ├── __init__.py
│ └── test_api.py # 示例测试文件
├── requirements.txt # 项目依赖
├── README.md # 项目说明
└── .gitignore # Git 忽略规则
三、各文件夹的职责说明
- 1.app/api/
- •endpoints.py: 定义一般的 API 路由,如说话人提取的通用接口。
- •audio_router.py: 定义与音频处理相关的 API 路由,如提取目标说话人声音、语音转文字、训练模型相关接口。
- •__init__.py: 使api成为一个 Python 包。
- 2.app/services/
- •audio_processor.py: 包含音频处理的业务逻辑,如调用 SpeechBrain 进行相似度计算、音频分割、提取等。
- •audio_dataset.py: 定义自定义的 PyTorchDataset类,用于加载和处理训练数据。
- •audio_model.py: 定义 PyTorch 模型架构,如 CNN 模型。
- •data_loader.py: 包含数据加载与预处理的逻辑,如创建DataLoader、数据转换等。
- •train_model.py: 包含模型训练的逻辑,如训练循环、损失计算、优化器更新等。
- •__init__.py: 使services成为一个 Python 包。
- 3.app/schemas/
- •api_schemas.py: 定义 Pydantic 模型,用于请求和响应的数据验证与序列化。
- •__init__.py: 使schemas成为一个 Python 包。
- 4.app/utils/
- •custom_logger.py: 自定义日志记录器的实现。
- •helpers.py: 其他辅助函数,如文件操作、路径处理等。
- •__init__.py: 使utils成为一个 Python 包。
- 5.app/main.py
- •FastAPI 应用的入口文件,包含应用初始化、路由注册、事件处理等。
- 6.data/
- •存放所有与数据相关的文件,如混合音频、目标纯净音频、提取的音频、嵌入向量、标签文件和训练好的模型。
- •models/: 用于保存训练好的 PyTorch 模型。
- 7.tests/
- •存放测试代码,确保各个模块的功能正确性。
- •test_api.py: 示例测试文件,测试 API 路由。
- 8.requirements.txt
- •列出项目所需的 Python 包及其版本,便于环境部署和依赖管理。
- 9.README.md
- •项目说明文档,包括项目介绍、安装步骤、使用指南等。
- 10..gitignore
- •指定 Git 忽略的文件和目录,如虚拟环境目录、缓存文件等。
四、关于data_loader.py等模块的放置
根据上述推荐的项目结构:...
|-转 音频处理项目fse
安装好了anaconda软件后,先按国内的镜像源,可以用清华的镜像源,
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
设置好镜像源后,执行下面命令
conda create -n fse python=3.11
直连的用这个命令速度更快
conda create -n fse -c https://conda.anaconda.org/conda-forge --override-channels python=3.11
conda activate fse
pip3 install torch torchaudio torchvision --index-url https://download.pytorch.org/whl/cu128
说明cu128就是安装的torch torchaudio torchvision对应支持的CUDA版本12.8,如果你的显卡驱动支持CUDA12.8 或更高,你都可以安装cu128,如果你显卡驱动只支持CUDA12.6那就安装
pip3 install torch torchaudio torchvision --index-url https://download.pytorch.org/whl/cu126
现在测试的是cu128和cu126都可以,cu129安装了后再安装下面的其他扩展,会有些扩展安装不上
所以建议安装 torch torchaudio torchvision的cu128或cu126
pip3 install fastapi speechbrain uvicorn pydantic python-multipart librosa soundfile pydub scipy pillow python-dotenv pytest httpx onnxruntime
pip3 install pydantic_setting (如果pip安装失败尝试用conda安装)
conda install pydantic_setting (如果还是失败,网络先直连然后用conda-forge频道安装)
用这下面个命令
conda install -c https://conda.anaconda.org/conda-forge --override-channels pydantic-settings
为确保datasets和modelscope兼容,请用以下命令安装确定版本
pip install datasets==2.18.0
pip install modelscope==1.11.0
之后设置huggingface的主目录和缓存目录(不设置默认是C盘的,后面重装系统又要重新下载模型)
Win10系统下环境搭建
安装提示:此项目不要安装whisperx
ModelScope 与 numpy 2.x 冲突是官方已知 issue,
在 单一环境 里 无法同时满足 whisperx 与 ModelScope。
最稳妥:把声纹功能放到独立环境或改用 SpeechBrain。
安装好了anaconda软件后,先按国内的镜像源,可以用清华的镜像源,设置好镜像源后,执行下面命令 conda create -n fse python=3.11 直连的用这个命令速度更快 conda create -n fse -c https://conda.anaconda.org/conda-forge --override-channels python=3.11 conda activate fse pip3 install torch torchaudio torchvision --index-url https://download.pytorch.org/whl/cu128 说明cu128就是安装的torch torchaudio torchvision对应支持的CUDA版本12.8,如果你的显卡驱动支持CUDA12.8 或更高,你都可以安装cu128,如果你显卡驱动只支持CUDA12.6那就安装 pip3 install torch torchaudio torchvision --index-url https://download.pytorch.org/whl/cu126 现在测试的是cu128和cu126都可以,cu129安装了后再安装下面的其他扩展,会有些扩展安装不上 所以建议安装 torch torchaudio torchvision的cu128或cu126 pip3 install fastapi speechbrain uvicorn pydantic python-multipart librosa soundfile pydub scipy pillow python-dotenv pytest httpx datasets pip3 install pydantic_setting (如果pip安装失败尝试用conda安装) conda install pydantic_setting ( 直连的用这个命令 conda install -c https://conda.anaconda.org/conda-forge --override-channels pydantic-settings 之后设置huggingface的主目录和缓存目录(不设置默认是C盘的,后面重装系统又要重新下载模型)
训练代码
import os
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from tqdm import tqdm
from app.services.audio_dataset import SpeakerExtractionDataset # 导入数据集类
from app.services.audio_model import SpeakerExtractionCNN1D # 导入模型类
# 参数配置
DATA_DIR = 'data/embeddings' # 数据目录
LABELS_DIR = 'data/labels' # 标签目录
EMBEDDING_DIR = 'data/embeddings' # 嵌入目录
BATCH_SIZE = 16
EPOCHS = 20
LEARNING_RATE = 0.001
MODEL_SAVE_PATH = 'models/speaker_extraction_model.pth'
EMBEDDING_DIM = 192 # 根据您的嵌入维度调整
# 设备配置
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")
# 创建 Dataset 和 DataLoader
dataset = SpeakerExtractionDataset(
data_dir=DATA_DIR,
labels_dir=LABELS_DIR,
embedding_dir=EMBEDDING_DIR,
transform=None
)
dataloader = DataLoader(
dataset,
batch_size=BATCH_SIZE,
shuffle=True
)
# 初始化模型
model = SpeakerExtractionCNN1D(input_dim=1).to(device) # 根据特征维度调整 input_dim
# 损失函数和优化器
criterion = nn.MSELoss() # 回归任务,若为分类任务可改为 nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)
# 训练循环
for epoch in range(EPOCHS):
model.train() # 设置模型为训练模式
running_loss = 0.0
for features, labels in tqdm(dataloader, desc=f"Epoch {epoch+1}/{EPOCHS}"):
features = features.to(device) # 将特征移动到设备
labels = labels.to(device) # 将标签移动到设备
# 前向传播
outputs = model(features)
loss = criterion(outputs, labels) # 计算损失
# 反向传播和优化
optimizer.zero_grad() # 清零梯度
loss.backward() # 反向传播
optimizer.step() # 更新参数
running_loss += loss.item() * features.size(0) # 累加损失
# 计算每个 epoch 的平均损失
epoch_loss = running_loss / len(dataloader.dataset)
print(f"Epoch {epoch+1}/{EPOCHS}, Loss: {epoch_loss:.4f}")
# 保存模型
torch.save(model.state_dict(), MODEL_SAVE_PATH)
print(f"模型已保存到 {MODEL_SAVE_PATH}")
. 代码说明
- •数据集与数据加载器: 使用SpeakerExtractionDataset类加载数据,并通过DataLoader进行批处理和打乱。
- •模型初始化: 初始化SpeakerExtractionCNN1D模型,并将其移动到相应的设备(GPU 或 CPU)。
- •损失函数与优化器: 使用均方误差损失(MSE)进行回归任务,您可以根据需要更改为分类任务的损失函数。
- •训练循环: 在每个 epoch 中,遍历数据加载器,进行前向传播、损失计算、反向传播和参数更新。使用tqdm显示训练进度。
- •模型保存: 训练完成后,将模型参数保存到指定路径。
5. 其他注意事项
- •特征与标签: 确保在SpeakerExtractionDataset中正确加载和处理特征与标签。如果使用不同的特征(如嵌入向量),请相应调整模型输入维度。
- •模型选择: 根据您的任务需求(回归或分类),选择合适的模型和损失函数。
- •超参数调整: 根据实验结果调整学习率、批次大小和训练轮数等超参数,以获得更好的模型性能。
通过上述步骤,您可以将audio_dataset.py和audio_model.py整合在一起,并编写train_audio_model.py进行模型训练。这样,您就能够利用反馈机制,训练一个模型来提高目标说话人声音提取的准确性。 ...
|-转 各种python 相关命令
torch.cuda.is_available()命令行查看cuda的命令
命令行(CMD / Anaconda Prompt)里直接敲:
python -c "import torch; print(torch.cuda.is_available())"
返回 True 表示 CUDA 可用,False 表示不可用。
conda create -n my -c https://conda.anaconda.org/conda-forge --override-channels mamba
用conda-forge的官方源安装 环境变量名是my的mamba环境 20250826 0712
激活环境后,没装python装python,装了python的话直接执行
pip3 install torch torchaudio torchvision --index-url https://download.pytorch.org/whl/cu129
具体根据你显卡驱动的cuda版本 cu129就是cuda12.9
如果是做音频处理,建议按下面这些扩展
pip3 install fastapi uvicorn pydantic python-multipart librosa soundfile pydub scipy pillow python-dotenv pytest httpx
20250828 0720
报错
Collecting anyio<5,>=3.6.2 (from starlette<0.48.0,>=0.40.0->fastapi)
Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a1/ee/48ca1a7c89ffec8b6a0c5d02b89c305671d5ffd8d3c94acf8b8c408575bb/anyio-4.9.0-py3-none-any.whl (100 kB)
Collecting starlette<0.48.0,>=0.40.0 (from fastapi)
Using cached https://pypi.tuna.tsinghua.edu.cn/packages/f7/1f/b876b1f83aef204198a42dc101613fefccb32258e5428b5f9259677864b4/starlette-0.47.2-py3-none-any.whl (72 kB)
Collecting pydantic-core==2.33.2 (from pydantic)
Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a0/75/4a0a9bac998d78d889def5e4ef2b065acba8cae8c93696906c3a91f310ca/pydantic_core-2.33.2-cp313-cp313-win_amd64.whl (2.0 MB)
---------------------------------------- 2.0/2.0 MB 2.3 MB/s 0:00:00
Collecting pydantic
Using cached https://pypi.tuna.tsinghua.edu.cn/packages/6a/c0/ec2b1c8712ca690e5d61979dee872603e92b8a32f94cc1b72d53beab008a/pydantic-2.11.7-py3-none-any.whl (444 kB)
ERROR: Ignored the following versions that require a different python version: 0.52.0 Requires-Python >=3.6,<3.9; 0.52.0rc3 Requires-Python >=3.6,<3.9; 0.53.0 Requires-Python >=3.6,<3.10; 0.53.0rc1.post1 Requires-Python >=3.6,<3.10; 0.53.0rc2 Requires-Python >=3.6,<3.10; 0.53.0rc3 Requires-Python >=3.6,<3.10; 0.53.1 Requires-Python >=3.6,<3.10; 0.54.0 Requires-Python >=3.7,<3.10; 0.54.0rc2 Requires-Python >=3.7,<3.10; 0.54.0rc3 Requires-Python >=3.7,<3.10; 0.54.1 Requires-Python >=3.7,<3.10; 0.55.0 Requires-Python >=3.7,<3.11; 0.55.0rc1 Requires-Python >=3.7,<3.11; 0.55.1 Requires-Python >=3.7,<3.11; 0.55.2 Requires-Python >=3.7,<3.11; 1.10.0 Requires-Python >=3.8,<3.12; 1.10.0rc1 Requires-Python >=3.8,<3.12; 1.10.0rc2 Requires-Python >=3.8,<3.12; 1.10.1 Requires-Python >=3.8,<3.12; 1.11.0 Requires-Python >=3.9,<3.13; 1.11.0rc1 Requires-Python >=3.9,<3.13; 1.11.0rc2 Requires-Python >=3.9,<3.13; 1.11.1 Requires-Python >=3.9,<3.13; 1.11.2 Requires-Python >=3.9,<3.13; 1.11.3 Requires-Python >=3.9,<3.13; 1.21.2 Requires-Python >=3.7,<3.11; 1.21.3 Requires-Python >=3.7,<3.11; 1.21.4 Requires-Python >=3.7,<3.11; 1.21.5 Requires-Python >=3.7,<3.11; 1.21.6 Requires-Python >=3.7,<3.11; 1.26.0 Requires-Python >=3.9,<3.13; 1.26.1 Requires-Python >=3.9,<3.13; 1.6.2 Requires-Python >=3.7,<3.10; 1.6.3 Requires-Python >=3.7,<3.10; 1.7.0 Requires-Python >=3.7,<3.10; 1.7.1 Requires-Python >=3.7,<3.10; 1.7.2 Requires-Python >=3.7,<3.11; 1.7.3 Requires-Python >=3.7,<3.11; 1.8.0 Requires-Python >=3.8,<3.11; 1.8.0rc1 Requires-Python >=3.8,<3.11; 1.8.0rc2 Requires-Python >=3.8,<3.11; 1.8.0rc3 Requires-Python >=3.8,<3.11; 1.8.0rc4 Requires-Python >=3.8,<3.11; 1.8.1 Requires-Python >=3.8,<3.11; 1.9.0 Requires-Python >=3.8,<3.12; 1.9.0rc1 Requires-Python >=3.8,<3.12; 1.9.0rc2 Requires-Python >=3.8,<3.12; 1.9.0rc3 Requires-Python >=3.8,<3.12; 1.9.1 Requires-Python >=3.8,<3.12; 3.3.0 Requires-Python >=3.9,<3.13; 3.3.1 Requires-Python >=3.9,<3.13; 3.3.2 Requires-Python >=3.9,<3.13; 3.3.3 Requires-Python >=3.9,<3.13; 3.3.4 Requires-Python >=3.9,<3.13; 3.4.0 Requires-Python >=3.9,<3.13; 3.4.1 Requires-Python >=3.9,<3.13; 3.4.2 Requires-Python >=3.9,<3.13
ERROR: Could not find a version that satisfies the requirement ctranslate2==4.4.0 (from whisperx) (from versions: 4.6.0)
ERROR: No matching distribution found for ctranslate2==4.4.0
(fse) D:\python\fastapi-speaker-extractor>
(fse) D:\python\fastapi-speaker-extractor>python --version
Python 3.13.5
(fse) D:\python\fastapi-speaker-extractor>
20250826 0747...
|-转 python 报错 SyntaxError: 'return' outside function
{
"1b38f5a6230ac636944ef3df2a7b18a9aec530f931fed681d942267186102368": {
"short_code": "1uqjLT",
"label": 0.0,
"filepath": "outputs\\preprocessed\\1b38f5a6230ac636944ef3df2a7b18a9aec530f931fed681d942267186102368.wav",
"created_at": "2025-08-26T10:23:35.373116+08:00"
},
"0386ab79e9163b22a2b5e25a84d3443d79b5cc08d7f26d87da3bc68de8340544": {
"short_code": "1uqcmD",
"label": 0.67,
"filepath": "outputs\\preprocessed\\0386ab79e9163b22a2b5e25a84d3443d79b5cc08d7f26d87da3bc68de8340544.wav",
"created_at": "2025-08-26T03:22:45.509993+08:00"
},
"856616252eccfa58e713998fdeaaf8a2acbd896d15977bf780884ca73635cc76": {
"short_code": "1uqiqv",
"label": 0.0,
"filepath": "outputs\\preprocessed\\processed_tmpo9v0me_w_1uqiqv.wav",
"created_at": "2025-08-26T09:52:01.721592+08:00"
}
}
2025-08-26 09:14:02,637 --- app.api.audio_router --- ERROR --- 处理音频时发生错误:
"D:\python\fastapi-speaker-extractor\app\services\audio_processor.py", line 75
return
^
SyntaxError: 'return' outside function
2025-08-26 09:14:02,631 --- app.api.audio_router --- WARNING --- 无法从主应用获取模型: WhisperX 模型未加载
2025-08-26 09:14:02,631 --- app.api.audio_router --- INFO --- 未提供配置参数,使用默认配置
2025-08-26 09:14:02,632 --- app.api.audio_router --- INFO --- 收到请求,文件=西游记多人16秒.wav,config={}
2025-08-26 09:14:02,637 --- app.api.audio_router --- ERROR --- 处理音频时发生错误:
Traceback (most recent call last):
File "D:\python\fastapi-speaker-extractor\app\api\audio_router.py", line 72, in extract_speaker
from app.services.audio_processor import process_audio
File "D:\python\fastapi-speaker-extractor\app\services\audio_processor.py", line 75
return
^
SyntaxError: 'return' outside function
Traceback (most recent call last):
File "D:\python\fastapi-speaker-extractor\app\api\audio_router.py", line 72, in extract_speaker
from app.services.audio_processor import process_audio
File "D:\python\fastapi-speaker-extractor\app\services\audio_processor.py", line 75
return
^
# 导入自定义模块
try:
from logger import logger
from app.utils.embedding_model_middleware import get_embedding_middleware, ModelType
from app.utils.onnx_model_loader import ONNXPyannoteEmbedding
from app.utils.error_handler import ErrorHandler
except ImportError as e:
print(f"导入工具模块失败: {e}")
return
代码 return的这个写法不知道是错哪里了。
通义灵码:
到目前为止,我们已经解决了以下几个问题:
JSON解析错误 - 通过将 config_value 参数改为可选并改进解析逻辑
类型注解兼容性问题 - 通过使用 Union[Path, str] 替代 Path | str 以支持 Python 3.8+
模型加载问题 - 通过修改模型加载逻辑确保默认加载
目录创建问题 - 通过将字符串路径转换为 Path 对象
现在您的应用程序应该能够正常处理音频文件了。
20250826 0926
G:\ProgramData\miniconda3\envs\speaker-extractor\lib\site-packages\pydub\audio_segment.py:678: RuntimeWarning: coroutine 'UploadFile.seek' was never awaited file.seek(0) RuntimeWarning: Enable tracemalloc to get the object allocation traceback G:\ProgramData\miniconda3\envs\speaker-extractor\lib\site-packages\pydub\audio_segment.py:678: RuntimeWarning: coroutine 'UploadFile.read' was never awaited file.seek(0) RuntimeWarning: Enable tracemalloc to get the object allocation traceback G:\ProgramData\miniconda3\envs\speaker-extractor\lib\site-packages\pydub\utils.py:268: RuntimeWarning: coroutine 'UploadFile.seek' was never awaited file.seek(0) RuntimeWarning: Enable tracemalloc to get the object allocation traceback 2025-08-26 09:26:28,638 --- fastapi-speaker-extractor --- ERROR --- ❌ 处理音频时发生错误: a bytes-like object is required, not 'coroutine' Traceback (most recent call last): File "D:\python\fastapi-speaker-extractor\app\services\audio_processor.py", line 148, in process_audio
22222222
2025-08-26 09:29:05,415 --- fastapi-speaker-extractor --- INFO --- ? 计算目标说话人占比 ✅ [缓存命中] 从缓存加载目标说话人 embedding: inputs/target_reference/target_reference_embedding\121e918b12035ef25024d8d9e2c8f39b.npy ? 正在分析音频,总长度: 3.00 秒,分段长度: 1.5 秒 2025-08-26 09:29:05,422 --- fastapi-speaker-extractor --- ERROR --- ❌ 处理音频时发生错误: 'float' object cannot be interpreted as an integer Traceback (most recent call last):
222222222222
2025-08-26 09:30:22,560 --- fastapi-speaker-extractor --- INFO --- 临时文件已清理: C:\Users\ADMINI~1\AppData\Local\Temp\tmpybyujt8p.wav
2025-08-26 09:30:22,561 --- app.api.audio_router --- ERROR --- 处理音频时发生错误:
Traceback (most recent call last):
File "D:\python\fastapi-speaker-extractor\app\services\audio_processor.py", line 188, in process_audio
proportion = calculate_target_proportion(
File "D:\python\fastapi-speaker-extractor\app\utils\audio_utils.py", line 118, in calculate_target_proportion
for i in range(num_segments):
TypeError: 'float' object cannot be interpreted as an integer
33333
raise RuntimeError(f"音频处理失败: {str(e)}")
RuntimeError: 音频处理失败: 'WindowsPath' object has no attribute 'cpu'
INFO: 127.0.0.1:14903 - "POST /api/audio/speaker/extract/ HTTP/1.1" 500 Internal Server Error
ERROR: Exception in ASGI application
Traceback (most recent call last):
File "D:\python\fastapi-speaker-extractor\app\services\audio_processor.py", line 223, in process_audio
sha256_hash=compute_audio_sha256(output_filepath),
File "D:\python\fastapi-speaker-extractor\app\utils\common_utils.py", line 208, in compute_audio_sha256
audio_np = audio_tensor.cpu().numpy() # 转 CPU 并转为 NumPy
AttributeError: 'WindowsPath' object has no attribute 'cpu'
5555555 ...
|-转 python常用命令
python -m app.services.batch_process
- 打开 PowerShell(Win+X → Windows PowerShell)。
- 执行下面两条命令,一行一回车:
# 如果 profile 文件不存在,先自动创建
if (!(Test-Path $PROFILE)) { New-Item -ItemType File -Path $PROFILE -Force }
# 把激活 fse311 的语句写进去(不会重复写入)
Add-Content -Path $PROFILE -Value 'conda activate fse311'
...
|-转 腾讯编程助手
我已经成功修复了batch_process.py文件中的问题。主要修复包括:
- 修复了模块导入问题:添加了项目根目录到sys.path,确保Python能够找到app模块
- 移除了不存在的装饰器:删除了@gpu_memory_monitor装饰器调用
- 修复了函数参数不匹配:调整了process_single_file函数的参数
- 添加了错误处理:为文件处理和批量处理添加了try-catch块
- 添加了目录检查:检查输入目录是否存在,避免运行时错误
- 修复了类型注解:将dict改为dict[str, any]
现在batch_process.py应该能够正常运行了。主要的错误"cannot access local variable 'mixed_dialogue'"已经在audio_processor.py中修复,而batch_process.py的结构和导入问题也已经解决。 20250826 1224...
|-转 python一些扩展兼容安装的处理方案
这里把踩过坑记录下,目的为了节省python的扩展环境的时间,提高效率
即使有了腾讯元宝和Kimi这样的AI智能回答工具,还是要花不少时间才能找到解决方案
为确保datasets和modelscope兼容,请用以下命令安装确定版本...
...