|-转 fastapi-speaker-extractor whisperx 项目报错 ValueError: The chosen align_model
pip3 install torch torchaudio torchvision --index-url https://download.pytorch.org/whl/cu126
确保您的torch版本至少为2.6。
ValueError: The chosen align_model "jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn" could not be found in huggingface (https://huggingface.co/models Models - Hugging Face Models - Hugging Face ) or torchaudio
参考网站https://pytorch.org/get-started/locally/
Traceback (most recent call last): File "D:\python\fastapi-speaker-extractor\app\api\endpoints.py", line 15, in extract_speaker result = await process_audio(audio_file.file, config_value) File "D:\python\fastapi-speaker-extractor\app\services\audio_processor.py", line 32, in process_audio model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device) File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\site-packages\whisperx\__init__.py", line 11, in load_align_model return alignment.load_align_model(*args, **kwargs) File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\site-packages\whisperx\alignment.py", line 102, in load_align_model raise ValueError(f'The chosen align_model "{model_name}" could not be found in huggingface (https://huggingface.co/models ) or torchaudio (https://pytorch.org/audio/stable/pipelines.html#id14 )') ValueError: The chosen align_model "jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn" could not be found in huggingface (https://huggingface.co/models ) or torchaudio (https://pytorch.org/audio/stable/pipelines.html#id14 ) INFO: 127.0.0.1:2832 - "POST /api/speaker/extract/?config_value=default HTTP/1.1" 500 Internal Server Error WARNING: StatReload detected changes in 'app\services\audio_processor.py'. Reloading... 报错
从错误信息来看,您遇到了两个主要问题:
- torch版本问题:由于torch.load存在一个严重的漏洞,您需要将torch升级到至少v2.6版本才能正常使用该函数。这个问题可以通过升级torch来解决。
- 模型加载问题:您尝试加载的模型jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn在Hugging Face模型库或torchaudio中找不到。这可能是因为模型名称错误,或者该模型确实不存在于这些库中。
解决步骤:
1. 升级torch版本
您可以通过以下命令升级torch:...
|-转 python报错 UnicodeEncodeError: 'gbk' codec can't encode character '\u2705'...
--- Logging error --- Traceback (most recent call last): File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\logging\__init__.py", line 1086, in emit stream.write(msg + self.terminator) UnicodeEncodeError: 'gbk' codec can't encode character '\u2705' in position 42: illegal multibyte sequence Call stack: File "<string>", line 1, in <module> File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\multiprocessing\spawn.py", line 116, in spawn_main exitcode = _main(fd, parent_sentinel) File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\multiprocessing\spawn.py", line 129, in _main return self._bootstrap(parent_sentinel) File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\multiprocessing\process.py", line 315, in _bootstrap self.run() File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\multiprocessing\process.py", line 108, in run self._target(*self._args, **self._kwargs) File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\site-packages\uvicorn\_subprocess.py", line 76, in subprocess_started target(sockets=sockets) File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\site-packages\uvicorn\server.py", line 61, in run return asyncio.run(self.serve(sockets=sockets)) File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\asyncio\runners.py", line 44, in run return loop.run_until_complete(main) File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\asyncio\base_events.py", line 634, in run_until_complete self.run_forever() File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\asyncio\base_events.py", line 601, in run_forever self._run_once() File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\asyncio\base_events.py", line 1905, in _run_once handle._run() File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\asyncio\events.py", line 80, in _run self._context.run(self._callback, *self._args) File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\site-packages\uvicorn\server.py", line 68, in serve config.load() File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\site-packages\uvicorn\config.py", line 467, in load self.loaded_app = import_from_string(self.app) File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\site-packages\uvicorn\importer.py", line 21, in import_from_string module = importlib.import_module(module_str) File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\importlib\__init__.py", line 127, in import_module return _bootstrap._gcd_import(name[level:], package, level) File "<frozen importlib._bootstrap>", line 1030, in _gcd_import File "<frozen importlib._bootstrap>", line 1007, in _find_and_load File "<frozen importlib._bootstrap>", line 986, in _find_and_load_unlocked File "<frozen importlib._bootstrap>", line 680, in _load_unlocked File "<frozen importlib._bootstrap_external>", line 850, in exec_module File "<frozen importlib._bootstrap>", line 228, in _call_with_frames_removed File "D:\python\fastapi-speaker-extractor\app\main.py", line 39, in <module> logger.info("✅ WhisperX 模型加载成功!") Message: '✅ WhisperX 模型加载成功!' Arguments: () --- Logging error --- 后面这些是什么,是那里错误了吗
从报错信息来看,主要是日志输出时碰到了编码问题(UnicodeEncodeError: 'gbk' codec can't encode character '\u2705'...),再加上后面还有一些版本不兼容的提示。下面分点解释原因和解决办法:
1. 最直接的错误:日志编码不兼容(GBK → UTF-8)
Python 的logging模块默认会用系统的编码(Windows 下常是'gbk')往控制台写日志。而你的代码里用了 Unicode 字符(比如✅这个 emoji 或特殊符号),gbk编码不认识这种字符,就会抛出UnicodeEncodeError。
解决思路:
让 Python 日志用 UTF-8 编码输出,而不是系统默认的 GBK。
做法有很多种,比较常见的是在程序开头(或配置日志的地方)加上下面这样的代码,强制让标准输出的编码变成 UTF-8:
我的logging是自定义的:在项目根目录下的logger.py 内容是 import logging import os class CustomLogger: def __init__(self, name, log_file, level=logging.INFO): self.logger = logging.getLogger(name) self.logger.setLevel(level) # 创建一个文件处理器,写入日志文件 file_handler = logging.FileHandler(log_file) file_handler.setLevel(level) # 创建一个控制台处理器,输出到控制台 console_handler = logging.StreamHandler() console_handler.setLevel(level) # 定义日志格式 formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') file_handler.setFormatter(formatter) console_handler.setFormatter(formatter) # 将处理器添加到 Logger 对象 self.logger.addHandler(file_handler) self.logger.addHandler(console_handler) def get_logger(self): return self.logger 。要怎么改 “让 Python 日志用 UTF-8 编码输出,而不是系统默认的 GBK。”
你的CustomLogger类是自定义的日志封装,它内部使用了 Python 标准库的logging模块,并分别添加了一个文件处理器(FileHandler)和一个控制台处理器(StreamHandler)。...
|-转 python whisperx 报错 in load_align_model raise ValueError(f'The chosen align_model "{model_name}"
raise ValueError(f'The chosen align_model "{model_name}" could not be found in huggingface (https://huggingface.co/models) or torchaudio (https://pytorch.org/audio/stable/pipelines.html#id14)')
ValueError: The chosen align_model "jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn" could not be found in huggingface (https://huggingface.co/models) or torchaudio (https://pytorch.org/audio/stable/pipelines.html#id14)
requests.exceptions.ConnectionError: (MaxRetryError("HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /api/models/jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn/tree/main/additional_chat_templates?recursive=False&expand=False (Caused by NewConnectionError(': Failed to establish a new connection: [WinError 10060] 由于连接方在一段时间后没有正确答复或连接的主机没有反应,连接尝试失败。'))"), '(Request ID: ee57b154-cd73-4a1a-911a-a89c496c8b20)') During handling of the above exception, another exception occurred: Traceback (most recent call last): File "D:\python\fastapi-speaker-extractor\app\api\endpoints.py", line 25, in extract_speaker result = await process_audio(audio_file.file, config_value, whisper_model, device) File "D:\python\fastapi-speaker-extractor\app\services\audio_processor.py", line 25, in process_audio model_a, metadata = whisperx.load_align_model(language_code="zh", device=device) File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\site-packages\whisperx\__init__.py", line 11, in load_align_model return alignment.load_align_model(*args, **kwargs) File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\site-packages\whisperx\alignment.py", line 102, in load_align_model raise ValueError(f'The chosen align_model "{model_name}" could not be found in huggingface (https://huggingface.co/models) or torchaudio (https://pytorch.org/audio/stable/pipelines.html#id14)') ValueError: The chosen align_model "jonatasgrosman/wav2vec2-large-xlsr-53-chinese-zh-cn" could not be found in huggingface (https://huggingface.co/models) or torchaudio (https://pytorch.org/audio/stable/pipelines.html#id14) INFO: 127.0.0.1:1141 - "POST /api/speaker/extract/?config_value=default HTTP/1.1" 500 Internal Server Error
由于网络原因,会访问hugging face官网,但是网络无法访问,所有报错。...
|-转 pyannote/embedding 模型是真难引入模型
pyannote/embedding 模型是真难引入模型,花了4小时,最后用替代方案deepghs/pyannote-embedding-onnx 20250823 1903...
|-转 Trae 或者是我自己 莫名奇妙创建了个文件,影响了项目代码的运行。
莫名奇妙创建了个文件,影响了项目代码的运行。
D:\python\fastapi-speaker-extractor\absolute\path\to\your
还有这种事情
# 确保正确设置了环境变量 import os os.environ["HF_ENDPOINT"] = "https://huggingface.co" # 使用官方端点 os.environ["HUGGINGFACE_TOKEN"] = "your_token_here" # 然后加载模型(如项目中已实现的) from pyannote.audio import Model model = Model.from_pretrained("pyannote/embedding", use_auth_token=os.getenv("HUGGINGFACE_TOKEN")) # 1. 确保您的token有该模型的访问权限 # 2. 尝试直接从Hugging Face加载模型 from speechbrain.pretrained import SpeakerRecognition # 初始化模型 verification = SpeakerRecognition.from_hparams(source="speechbrain/spkrec-ecapa-voxceleb") # 使用模型进行声纹识别 score, prediction = verification.verify_files("/path/to/speaker1.wav", "/path/to/speaker2.wav")
20250823...
|-转 WhisperX 无法加载模型
WhisperX 无法加载模型
File "G:\ProgramData\miniconda3\envs\speaker-extractor\lib\site-packages\huggingface_hub\_snapshot_download.py", line 230, in snapshot_download raise LocalEntryNotFoundError( huggingface_hub.errors.LocalEntryNotFoundError: Cannot find an appropriate cached snapshot folder for the specified revision on the local disk and outgoing traffic has been disabled. To enable repo look-ups and downloads online, pass 'local_files_only=False' as input. During handling of the above exception, another exception occurred: Traceback (most recent call last): File "D:\python\fastapi-speaker-extractor\app\main.py", line 82, in <module> raise RuntimeError(f"WhisperX 无法加载模型,请检查安装和环境。{e}") RuntimeError: WhisperX 无法加载模型,请检查安装和环境。Cannot find an appropriate cached snapshot folder for the specified revision on the local disk and outgoing traffic has been disabled. To enable repo look-ups and downloads online, pass 'local_files_only=False' as input. (speaker-extractor) PS D:\python\fastapi-speaker-extractor>
20250823 23:44...
|-转 HUGGINGFACE_HUB_CACHE 设置错误导致的问题
真的吐了,Trae和腾讯元宝都找不出原因。报错只是只是显示401没有权限访问hf-mirror.com等等
或者是Cannot find an appropriate cached snapshot folder for the specified revision on the local disk and outgoing traffic has been disabled. To enable repo look-ups and downloads online, pass 'local_files_only=False' as input.
代码加载模型一直报错
import whisperx device = "cuda" # 或者 "cpu" model_whisper = whisperx.load_model("base", device=device, compute_type="float32")
RuntimeError: 无法加载 WhisperX 模型,请检查安装和环境。Cannot find an appropriate cached snapshot folder for the specified revision on the local disk and outgoing traffic has been disabled. To enable repo look-ups and downloads online, pass 'local_files_only=False' as input.
返回的错误一直就是下面这类的。
不能直连HF官网后,本地加载模型一直失败,直接花了我6个小时以上,最后无意中发现项目的根目录多出来两个文件夹,一个是$HUGGINGFACE_HOME,另一个是.cache。删除后,正常了。 ...
|-转 通义之旅
大概对话了4个小时,之后我休息了几小时,然后再对话2小时左右。提示“看起来我们今天已经有了很多的对话,我很感谢你的热情,但我现在需要稍微休息一下。抱歉要中断我们的对话了,期待明天和你继续聊天。” 20250824 16:29
Nice,体验很好
主要修改:
移除了对 process_audio 和 speech_to_text 的导入:因为这些是异步函数,不适合在模块初始化时导入
修复了导入语句:使用正确的函数名 get_embedding_middleware 而不是 get_embedding_model_middleware
这些修改应该能解决您遇到的 AttributeError: 'EmbeddingModelMiddleware' object has no attribute 'register_model' 错误。
nice ,厉害!你的python编程在什么水平上
谢谢您的夸奖!关于我的Python编程水平,我可以说我具备以下能力:
## 我的Python编程能力
### 1. **基础知识**
- 熟练掌握Python语法、数据结构、面向对象编程
- 理解Python的高级特性如装饰器、生成器、上下文管理器等
- 熟悉Python标准库的常用模块
### 2. **框架和库**
- 熟悉主流框架如FastAPI、Django、Flask
- 熟悉数据科学库如NumPy、Pandas、Matplotlib
- 熟悉机器学习库如Scikit-learn、TensorFlow、PyTorch
- 熟悉异步编程如asyncio、aiohttp等
### 3. **项目架构**
- 能够设计和分析项目结构
- 理解模块化和包管理
- 熟悉配置管理、日志记录、错误处理等最佳实践
### 4. **问题解决能力**
- 能够快速定位和修复语法错误、逻辑错误
- 熟悉常见的异常处理模式
- 能够优化代码性能和可读性
### 5. **调试和测试**
- 理解单元测试和集成测试
- 能够分析错误日志和堆栈跟踪
- 熟悉调试技巧和工具
## 关于您的项目
对于您这个说话人提取项目,我能帮助:
- 修复代码中的语法和逻辑错误
- 优化项目结构和模块组织
- 改进错误处理和日志记录
- 协助配置管理和环境设置
不过我也需要说明,虽然我可以帮助解决具体的编程问题,但实际的项目开发还需要您结合具体需求和业务场景来完成。
您对我的帮助还满意吗?有什么其他问题我可以帮您解决的吗?
20250824 07:29
{ "message": "音频处理完成", "config": "default", "speakers_detected": 5, "segments": [ { "speaker": "SPEAKER_01", "start": 0.03096875, "end": 0.45284375, "duration": 0.421875 }, { "speaker": "SPEAKER_01", "start": 0.52034375, "end": 0.57096875, "duration": 0.05062500000000003 }, { "speaker": "SPEAKER_01", "start": 0.8915937500000001, "end": 1.3303437500000002, "duration": 0.4387500000000001 }, { "speaker": "SPEAKER_01", "start": 2.07284375, "end": 2.34284375, "duration": 0.27 }, { "speaker": "SPEAKER_01", "start": 2.3934687500000003, "end": 3.96284375, "duration": 1.569375 }, { "speaker": "SPEAKER_01", "start": 4.3678437500000005, "end": 4.48596875, "duration": 0.11812499999999915 }, { "speaker": "SPEAKER_01", "start": 4.705343750000001, "end": 5.498468750000001, "duration": 0.7931249999999999 }, { "speaker": "SPEAKER_01", "start": 7.995968750000001, "end": 8.83971875, "duration": 0.8437499999999982 }, { "speaker": "SPEAKER_00", "start": 0.45284375, "end": 0.52034375, "duration": 0.0675 }, { "speaker": "SPEAKER_00", "start": 2.34284375, "end": 4.3678437500000005, "duration": 2.0250000000000004 }, { "speaker": "SPEAKER_00", "start": 4.48596875, "end": 15.977843750000002, "duration": 11.491875000000002 }, { "speaker": "SPEAKER_03", "start": 11.084093750000001, "end": 11.10096875, "duration": 0.016874999999998863 }, { "speaker": "SPEAKER_02", "start": 11.10096875, "end": 11.539718750000002, "duration": 0.4387500000000024 }, { "speaker": "SPEAKER_04", "start": 13.699718750000002, "end": 15.89346875, "duration": 2.193749999999998 } ], "transcription": null, "speaker_embeddings": { "SPEAKER_01": { "embedding": [ 0.777779651038922, 0.5709335537169954, 0.6502486116435126, 0.3957192536483889, 0.33682669277721655, 0.23532944585103743, 0.6691889760189264, 0.9155553454428661, 0.7187591570003378, 0.041015835486950425, 0.9263556706063688, 0.9842760376769557, 0.22299650694226747, 0.6596784585051534, 0.011977841110457521, 0.08662964921239547, 0.8590584076965014, 0.9432451225732621, 0.6991147433624788, 0.7139162862961621, 0.5138930476423023, 0.6855240422600192, 0.502549022830554, 0.6600743053925334, 0.5426503430063094, 0.1239807100111322, 0.08679667407081859, 0.5376124635974292, 0.9392836496761979, 0.9551275237630077, 0.7924282298155979, 0.08996393174594652, 0.13782183209168775, 0.1213631348250721, 0.09105054102061871, 0.04406703577941673, 0.13633818037587264, 0.6560012705736046, 0.43154468999459694, 0.1341306576815524, 0.2522093817108825, 0.5981025696288607, 0.5439023738973278, 0.0977244414354057, 0.34079172313515116, 0.4727704874300571, 0.6755335931752694, 0.9874570053685833, 0.3958535812694416, 0.4601717554277547, 0.1345165091859647, 0.04229278163025396, 0.6884999125928399, 0.18031702315116427, 0.06721756638106124, 0.2992986843307661, 0.48966930193253344, 0.45181238374732224, 0.3412122446670175, 0.3019318545039603, 0.8479683187557411, 0.5799770354299979, 0.982828328529503, 0.6442376677026354, 0.5601013798227293, 0.750478519504632, 0.17841533788109543, 0.30053144445211577, 0.8193975097229126, 0.5421159710358453, 0.5038376919731312, 0.448200897331156, 0.19442355362060382, 0.9184214418016234, 0.1931506270614728, 0.8939789482907609, 0.8564062205365838, 0.679789489707233, 0.5485430485093375, 0.20997726100126068, 0.3848678632520711, 0.05873836099031804, 0.5710507319693923, 0.9590513638949537, 0.4587789272727131, 0.3907441464588006, 0.08933674274777814, 0.26818073432223255, 0.07033311464354441, 0.5981984091965694, 0.4411024100088601, 0.2507536523567112, 0.4854477517062644, 0.11291549603316209, 0.5034760271495292, 0.525427385288952, 0.4375848908556259, 0.6352308210957383, 0.086378647421404, 0.41688748885997484, 0.4361651220775614, 0.360855330072557, 0.7962444602135459, 0.7569351541726294, 0.09351747713015912, 0.5045546070146725, 0.03802194558837091, 0.07972175132601611, 0.06961428456480312, 0.8885234138753977, 0.6277925558689985, 0.4478902222257837, 0.35478262120641935, 0.7824658951263368, 0.03667066946561326, 0.19560241700590209, 0.6320662642979136, 0.6843799221692117, 0.9157849958266908, 0.9080372348987775, 0.5015866191928954, 0.497578160097209, 0.21593198358044985, 0.7358895009828056, 0.9944958274195973, 0.20137074383436615, 0.9525882282332135, 0.42935231147833275, 0.29521609708890595, 0.7353420772627942, 0.2897450435983565, 0.9647720662650869, 0.6158085982358013, 0.6853005591865147, 0.9475438494128763, 0.6706676659186701, 0.15317343641167358, 0.7768962391286001, 0.23683744107645055, 0.2040563278386175, 0.7185875308920915, 0.45122103654481505, 0.8264415684866033, 0.12668257128335925, 0.7079187730961614, 0.2751943143766197, 0.3827429286606362, 0.24135190061120404, 0.5458346270734151, 0.37474468625853496, 0.8650457977854594, 0.6449463915423657, 0.1496680631297117, 0.45153452134754535, 0.41615633582025746, 0.6013534399540869, 0.38310675965457297, 0.5889717498473717, 0.021062402840886008, 0.5827578904425793, 0.15088172295511693, 0.8072489399458777, 0.5653289480542877, 0.7025307377760507, 0.17133616585432465, 0.5664669670428305, 0.5783610156962078, 0.14688967983057766, 0.7907302737520348, 0.8975083698023189, 0.45439470000537807, 0.14996576304563924, 0.12069464713830103, 0.6804418847145536, 0.10649558471372034, 0.05877312048437955, 0.31718022507406596, 0.9212596491669748, 0.9748746935692556, 0.021913051098540692, 0.4609712420877251, 0.7218266279246887, 0.8730827582253732, 0.04339323222700853, 0.22044783977528237, 0.3141430187771046, 0.5465760096537191, 0.38851072840805345, 0.17191115256433787, 0.21458061726624833, 0.2305270881770144, 0.27390081618086626, 0.8142751615622157, 0.3326352058815675, 0.30007370828904256, 0.08016803223310331, 0.4476978923164573, 0.15493657244069237, 0.7798055205640959, 0.5110697919281231, 0.8209299319897684, 0.7423800722960445, 0.06489799300698129, 0.7910078289766419, 0.7918904577195852, 0.8256784154169723, 0.4524101976617454, 0.988459807336977, 0.7447523375049755, 0.812442749553774, 0.6974501096543406, 0.1243707262249738, 0.7720653820164257, 0.7289500402606474, 0.8547163416889588, 0.09396411735347265, 0.20455710233960145, 0.620310138400527, 0.8544860757281896, 0.4964116800523849, 0.9492493074164444, 0.36008955858685465, 0.742062304993595, 0.7029850192964762, 0.1929031656443625, 0.8882161750112234, 0.22461326488111422, 0.1804839877587604, 0.8283687648879925, 0.7913686088585236, 0.9207856175827153, 0.9909042259594141, 0.6583441010119987, 0.8416889433642138, 0.895993208812677, 0.15676129048850918, 0.019544631167190407, 0.8912087623912354, 0.41738641458882986, 0.6895937449769161, 0.3427578373169906, 0.10723947827898728, 0.37145815554044037, 0.03363719833342327, 0.9066696027058663, 0.08205551219081031, 0.08747295858038207, 0.5265462564884933, 0.32468853300789735, 0.555060931327795, 0.6688669326811171, 0.12773421488969705, 0.28279708907399126, 0.6826034806447154, 0.4178251368053921, 0.34197159584254333, 0.11165641216878286, 0.321342817119623, 0.23334651159520758, 0.11924487223843006, 0.5147025381780037, 0.8389761275747275, 0.9091664602935572, 0.8088630132880362, 0.2607386869603555, 0.5999410190988087, 0.28819851434906585, 0.04835630359912679, 0.16529934980286642, 0.0283211742928825, 0.1522700578023305, 0.8017899115397439, 0.5816539149431361, 0.8766284195502531, 0.36607109690603545, 0.39133710316318604, 0.5658621286068686, 0.553863254057803, 0.41149579292896055, 0.8977800059833045, 0.5282180875703348, 0.5978462922083229, 0.9243869938232245, 0.9809912743248483, 0.04464495824754944, 0.6918201060281808, 0.9539941439921931, 0.598314374361743, 0.7049634779983667, 0.02967334422819201, 0.9034675107453064, 0.3824381966841687, 0.7125636247785088, 0.46032653582460226, 0.6823756272948115, 0.7291560137284867, 0.57054662245767, 0.6309233995324682, 0.7940836743409977, 0.4733584850334376, 0.960228553092802, 0.033264180994415415, 0.16814821672040325, 0.736037962743123, 0.9586738942553996, 0.893173335415169, 0.5109786875054482, 0.5549151808487973, 0.21802841393578032, 0.23501789526079042, 0.3791673776712803, 0.15938851572391344, 0.35376449239632646, 0.21968698647366824, 0.8644231144946367, 0.9270738631086481, 0.6956917041872457, 0.726619828394731, 0.08460227948988652, 0.9950944637125941, 0.8931217911172211, 0.9232025986508297, 0.3980462848535681, 0.8434192248453172, 0.6210101014206424, 0.2447119233625481, 0.4728149708296845, 0.9969833654357756, 0.022097029428213677, 0.6798154194066497, 0.11316055178496498, 0.49340319828418444, 0.12653378444631747, 0.9489053502084343, 0.22118956202630968, 0.24651018702562377, 0.8609073082703036, 0.57469873722498, 0.9732365052430514, 0.11157582445365954, 0.9948488181432913, 0.7750075816903491, 0.6824869210183347, 0.9706746344334413, 0.8506416906468435, 0.6473594056140869, 0.08184697310946965, 0.7174379148441202, 0.2481925166245491, 0.29448746765994793, 0.5459280048231541, 0.47602968071348795, 0.9067203128317199, 0.34257128653483093, 0.8424911276362116, 0.45065943491991345, 0.3825418759346103, 0.3011441084119385, 0.7642300939193627, 0.9387064133107097, 0.26191207252113125, 0.7220480451028579, 0.3945400873391146, 0.2814759956912324, 0.3822764281628237, 0.3324107674277045, 0.6993260693676701, 0.6870304009150965, 0.8199722194167125, 0.7831465219671321, 0.8403136445565487, 0.09866054540315206, 0.6750132664533021, 0.8657229507404858, 0.692515775682393, 0.7084102694711505, 0.7169617771890912, 0.39235021276499193, 0.6903032332255705, 0.2478800502627574, 0.9473537490719353, 0.7350254248795574, 0.5768469902295779, 0.8597779615375594, 0.8990228231975581, 0.8501882924142806, 0.5020836162521721, 0.3126972501723233, 0.2857434014928203, 0.45354164133144037, 0.2271603917993733, 0.5963812706403308, 0.8605546076785234, 0.2936311092815861, 0.08552505365972296, 0.18780913983720382, 0.34126678216679596, 0.9985202975337131, 0.8017715377445582, 0.0455698780699515, 0.07001909476063806, 0.4665253957940204, 0.8093221951222709, 0.5358520375887698, 0.8273549967537387, 0.6607114802365484, 0.831747865402305, 0.24218677476292327, 0.2414979470983326, 0.8628670065009877, 0.08239544073571858, 0.0034127007254199926, 0.45338766762512095, 0.781778674841391, 0.3323679746811753, 0.8322148564422156, 0.6192291794895527, 0.11557079954460847, 0.351072521557656, 0.39968089118429595, 0.4318197373435919, 0.32983179572587285, 0.9130839532347397, 0.3273734625749525, 0.03944326217729044, 0.7065110969928768, 0.2360542022378156, 0.2683174059266562, 0.8117443767403388, 0.6798629464495395, 0.17049114604314852, 0.2835947961549269, 0.5629308723771778, 0.23347413323279398, 0.9529257396857971, 0.666278700286948, 0.9194575129816979, 0.6251632588991757, 0.566519180101875, 0.2899959800462003, 0.5240769084572787, 0.7484874083065672, 0.40395947920773423, 0.6184481548822448, 0.028634923128107226, 0.5949219089791237, 0.770302635405962, 0.5851711852252468, 0.5618693736367424, 0.6742801452158564, 0.1903057095990014, 0.7484806062774504, 0.08368846158790078, 0.09019272108988141, 0.6146362018157282, 0.5694565001223136, 0.7256902884757009, 0.5506477948157542, 0.8836104324990773, 0.09572716072450826, 0.7817739728435418, 0.9944000399864048, 0.7630955943997495, 0.22449342981947473, 0.964161341721483, 0.779002477876206, 0.7960531969799906, 0.9307660331236423, 0.48247816566216406, 0.3905326427204988, 0.6406367160732447, 0.9042863697856872, 0.09394422908248745, 0.09106916108856877, 0.32091770392173313, 0.8778604432104994, 0.25728533441054335, 0.3289323350890395, 0.5307732956740371, 0.7714075046725684, 0.9712754724458056, 0.9363139358611828, 0.29857690662282044, 0.5558936888540338, 0.04367368212775835, 0.4735177370197753, 0.3487941018314721, 0.7557615469394956, 0.7026309652761147, 0.8761131538782503, 0.758510751914601, 0.46128134013383304, 0.569136214426595, 0.45278626485055806, 0.48190775882140013, 0.8597273559723679, 0.1941231710668615, 0.37909237308726584, 0.559006862688822, 0.02432400888128483, 0.030242692015054695, 0.8783865104355176, 0.977036651768512, 0.6146334601899077, 0.7325962151434082, 0.8951265824822033, 0.25208772950546066, 0.46377236336420125, 0.4125381482030229, 0.6257863258176941, 0.8648165753259821, 0.3103089777884924 ], "segment_count": 8 }, "SPEAKER_00": { "embedding": [ 0.08508555365646464, 0.3136976108669114, 0.6722975811189806, 0.4330311712048641, 0.2528376930431464, 0.42502566500882943, 0.9742534163004493, 0.8145815922226697, 0.5460330219701569, 0.6632350322144313, 0.9098850897480485, 0.10485582901012824, 0.26620254723474834, 0.15011879273599305, 0.10925831047511181, 0.14351088162147718, 0.5442526217150648, 0.8729539646025699, 0.2789295114336743, 0.10021151700651154, 0.24004010517052443, 0.6531147740750634, 0.416160843063171, 0.760846410619256, 0.40062798205262706, 0.6007725081964629, 0.17719570362858095, 0.512528351098693, 0.6777481348131166, 0.04999704999052501, 0.13984893958535882, 0.06853322607449408, 0.7333060631426506, 0.3830433901454189, 0.2858059541651834, 0.3390411712325839, 0.07813496796505348, 0.3855271099995946, 0.8087401027395982, 0.15974493185415484, 0.6579147896572494, 0.8074226846179904, 0.6004546578886873, 0.1505599095795801, 0.801259784748063, 0.9837237543711442, 0.9647578358177187, 0.27641669423933757, 0.35350207915691645, 0.7921891809770998, 0.9803536392779462, 0.093494501849682, 0.31876679199009417, 0.03432083157374055, 0.4853745833949751, 0.6245621984160419, 0.26451080301461405, 0.5755329160667354, 0.7633157389952122, 0.8912298525680445, 0.43354123350557816, 0.7609413807923769, 0.0921223756326065, 0.6459713880273883, 0.17504248029745362, 0.41251989061335226, 0.12686922239841414, 0.28937408720941404, 0.5662847679416333, 0.0016332327993338058, 0.3096151565619526, 0.5827058640056105, 0.5774370447089704, 0.8525990598154713, 0.03447309948761401, 0.18269030164923517, 0.34256675203240317, 0.8008517438123373, 0.22526624660365813, 0.8439913987383544, 0.14035008955796735, 0.6483541604555322, 0.42066880970897214, 0.5750517106724148, 0.920918826239489, 0.8172703126246788, 0.07298927429434565, 0.7657473960243679, 0.520903629881517, 0.7067793339918472, 0.9914778837110703, 0.6123975873337665, 0.3982288250886692, 0.26921379471695017, 0.06684203136995004, 0.49745233550648293, 0.26443327961326535, 0.615755926952278, 0.1765477534184685, 0.07686686503972973, 0.261524398294245, 0.83447789978834, 0.09806072452633019, 0.6204576444481869, 0.2773867269711394, 0.7004436565607997, 0.9761296509466689, 0.29855401428465855, 0.9434658213026239, 0.955644983411661, 0.9184186653656319, 0.6527939914317451, 0.8960181190920148, 0.1620669274793407, 0.3149583537902728, 0.1417851784903651, 0.047941148411805745, 0.7173385874270628, 0.37501659404896437, 0.4539498299275575, 0.8139526641652123, 0.39106281749894933, 0.25857621163567646, 0.15024708663749164, 0.1383023071629209, 0.1380260088336902, 0.8865094160360911, 0.21721992389213873, 0.10594539277709214, 0.374798955955294, 0.02032662414551878, 0.932190359107007, 0.8855140243286715, 0.4369416766738623, 0.20222902671667475, 0.5997393123479271, 0.8365994441664459, 0.27168941500861354, 0.07834641784493834, 0.892339730471165, 0.4974417362149417, 0.5808686067378839, 0.6637029692640515, 0.5437986216149504, 0.6458221553011293, 0.6588020114850844, 0.6180630079050616, 0.6388548819717741, 0.19750309916129694, 0.5845120825154803, 0.054863202188400684, 0.40972544474221617, 0.39750296899498905, 0.6470595121200527, 0.4655062924308937, 0.9140152998800155, 0.9471475055498688, 0.7571856746808117, 0.4288608195052859, 0.606435477164203, 0.7097122926333902, 0.916343281381186, 0.6325516230880399, 0.888622461017708, 0.7646117090563397, 0.45701702150293055, 0.09193739380235999, 0.7385187571563885, 0.14604940243628994, 0.8203836603156114, 0.36131081906461326, 0.6675694830259388, 0.6706666049094556, 0.9882812273099121, 0.6303767652060812, 0.15942161551158207, 0.4291937581050915, 0.43015565725745397, 0.24736080705108, 0.08198912921086432, 0.7249930427117014, 0.38359363240865185, 0.2626971525114118, 0.7235714154488143, 0.4348500777535881, 0.619664933799324, 0.23958013389121413, 0.1423438199892475, 0.7511002540663861, 0.2215569891743837, 0.8829879408513324, 0.25396117140051944, 0.05825246007937823, 0.885307591398735, 0.9827495254456535, 0.007492860120589695, 0.6042355096554165, 0.15217161247114463, 0.6288535286946877, 0.7334261146009639, 0.2846050211113351, 0.22019296288183854, 0.2872159972339182, 0.6565139368683708, 0.824924438816915, 0.1814309444289478, 0.16021873238061957, 0.7264419662708554, 0.4137844836171499, 0.49499853363144375, 0.5382818744143086, 0.5714583760720785, 0.6624724344638409, 0.5835685221737039, 0.4288745310831167, 0.011199954459440664, 0.22614020709497473, 0.7455016367578716, 0.2287832951623443, 0.23637017488811563, 0.1662241605781548, 0.31061939158191176, 0.42862536595234435, 0.6058611245184561, 0.251432092580158, 0.43701914319545043, 0.5351654892493816, 0.2659026339927739, 0.3013010871398234, 0.9084257227303089, 0.6725159901207128, 0.21370360602863558, 0.8886916825692946, 0.7735196060337534, 0.9272791730792647, 0.43951251280012293, 0.5954601647188571, 0.300224154222941, 0.46521176006186826, 0.8394851660117031, 0.6758129510310187, 0.23326424722360528, 0.3298220190225998, 0.7730795826532988, 0.3024203365625867, 0.8620458549047867, 0.5280522623525694, 0.9647924797118174, 0.7786923726237656, 0.8228821706477517, 0.28712740855076924, 0.8245079029685681, 0.0394097276535309, 0.36750480067718927, 0.42185443278471246, 0.17429416143793508, 0.31539238436782824, 0.7113311251590432, 0.22775617081136978, 0.2797876092624205, 0.5976301371106556, 0.06978966171698786, 0.36921249575716275, 0.5794484303942175, 0.3060507216985313, 0.8960274252476708, 0.72528733249642, 0.9277125156147016, 0.23288122287998492, 0.3955125215641635, 0.7978264876918022, 0.7772066201898283, 0.158070056030151, 0.9046342836020529, 0.9967889058613251, 0.9317970961971042, 0.9098435894753644, 0.21310146751129544, 0.5784950856592523, 0.9336983343930756, 0.12844237351118537, 0.520183273583788, 0.25441196905800256, 0.5431543192137306, 0.8439970878154661, 0.6649546205527289, 0.3755605660218053, 0.2395049619767632, 0.4825633180655583, 0.9381283013920786, 0.644892431554758, 0.7125005456890641, 0.6060634355496931, 0.7664826777675224, 0.917761726991163, 0.22344054007724867, 0.2744252263005449, 0.7532501668997166, 0.33382896854249267, 0.39223501912165315, 0.46211125654821317, 0.7006640881246253, 0.16800765296591624, 0.9491436394046275, 0.2044601862291684, 0.7281812108295689, 0.7813867599442655, 0.24708905965895567, 0.05640554188995417, 0.4396953678867721, 0.14447302463226486, 0.7562270932393121, 0.12137963220063208, 0.15588610276609582, 0.6224569774514072, 0.7256736483344446, 0.22302187864890122, 0.3310173317121873, 0.5007156038900807, 0.07817152506366876, 0.8528596815135313, 0.18154147349378014, 0.36080012823229934, 0.8058136007630408, 0.16235874209985124, 0.46693496448576843, 0.9415116444411148, 0.05153872708489682, 0.9472999297925163, 0.8054356889807579, 0.550315339710948, 0.10863549189806321, 0.6273027895927822, 0.4369041212738066, 0.020743020746123997, 0.707969041053388, 0.9990795016852569, 0.379739099814948, 0.01906890151917351, 0.5908437035849005, 0.49361661347465846, 0.06571178219896412, 0.664598428483484, 0.7648117541317315, 0.06612579215782421, 0.9397736436714265, 0.4197683610953221, 0.4594189138370608, 0.2938600292247251, 0.6451197501653387, 0.9167820675854164, 0.038054759224493306, 0.021807393157999178, 0.6346083641993714, 0.6883136715291619, 0.27189535065190296, 0.29527190838764117, 0.908743615359161, 0.26853205837844796, 0.191316077545723, 0.9716696208781184, 0.157367509111478, 0.9606911711088927, 0.954233922461315, 0.23412255130011772, 0.3813271151263131, 0.5873629974587247, 0.6791509140748772, 0.33677760019899383, 0.9975140365938108, 0.88340146770722, 0.38816154716928375, 0.24238301569166187, 0.8410939715806457, 0.9561807242509532, 0.6519101407810329, 0.8059565860960154, 0.3211444581250146, 0.035165148085131714, 0.49574766251154967, 0.9197758892489004, 0.6172269572412872, 0.319973217267146, 0.06734412461901151, 0.13147225348505287, 0.6676144348236932, 0.17791493299911565, 0.48319786788660934, 0.39280597140448725, 0.9723400786963553, 0.5680457110887972, 0.45490845167673877, 0.34312193443287275, 0.09731730079334444, 0.34470602518125415, 0.800096773766606, 0.21471123015684146, 0.7678913604692901, 0.6512339092720948, 0.45642362615083276, 0.9715425189721636, 0.8806564155108315, 0.7135072269081412, 0.09692139825182877, 0.04455570381650786, 0.06923033470456275, 0.16928522838594717, 0.0501340892363501, 0.6440855645765987, 0.39113266432804994, 0.24761243486051976, 0.2959465344082416, 0.9681559146928653, 0.11595069836151972, 0.4793742018485694, 0.24180378582454742, 0.09870028174269208, 0.690543269161159, 0.6635403114445604, 0.07781647192575003, 0.6178478884619383, 0.037225566790203946, 0.7678567865497061, 0.025867706579404626, 0.4556575154716612, 0.3137780112906259, 0.30712267991320596, 0.7636071619642224, 0.6611647671677396, 0.12228970424761643, 0.127395836575956, 0.9145674130623136, 0.3759508534416731, 0.34807725096808917, 0.8932661071273494, 0.688249182824861, 0.5450410049445521, 0.2721743564324126, 0.7743575474856892, 0.481878344103011, 0.6149312128417357, 0.8052902952800289, 0.9015275661109996, 0.8795704386382086, 0.04887931046387306, 0.9723485696834588, 0.23378018580423132, 0.024386886515922357, 0.1582388703222477, 0.5992371777839081, 0.22496223438358331, 0.45433500655604964, 0.4917427572639892, 0.8361372489153236, 0.703644944517281, 0.4718312698854269, 0.044890591132147106, 0.46851482295909785, 0.5001858687189599, 0.021741378074226048, 0.10139708436723183, 0.19173656576792086, 0.6399996493393576, 0.13508676313763235, 0.5260982750223708, 0.19561557602327873, 0.7665924401926438, 0.687279296339233, 0.9086018346248493, 0.6484936493473733, 0.07857461294636459, 0.4366927947229525, 0.17271708956867704, 0.49630270158369927, 0.2876949724888376, 0.3198694681226033, 0.9353456175367487, 0.3824031674275936, 0.46117851283791833, 0.765164439331585, 0.38891369542103393, 0.5351467444160642, 0.7219590183797743, 0.9624483975608029, 0.4524595175006104, 0.09904876122098649, 0.08534889743737051, 0.6202887391934838, 0.28603594450071634, 0.582545958042535, 0.23567272497186675, 0.5057805160320105, 0.9302018486859654, 0.46330333035754667, 0.7459735189847647, 0.6192351798416488, 0.24251426927483066, 0.7240900245160065, 0.8212070941502398, 0.5861727609560101, 0.6969767784914412, 0.45758036131815916, 0.04949126582121077, 0.7069567141664763, 0.01974635527878832, 0.9617944510005401, 0.5880012599770953, 0.6948812973203555, 0.14967780146130838, 0.9803223503618442, 0.32598582473001925, 0.7429402525964367 ], "segment_count": 3 }, "SPEAKER_03": { "embedding": [ 0.15937152060968085, 0.9552448051833307, 0.36749304969023655, 0.9961787884473108, 0.9389330763161424, 0.9987243216862794, 0.12634626329105247, 0.757371016587627, 0.1866099899391822, 0.5870557989517033, 0.4203354359646927, 0.1232101070235051, 0.7723571110282962, 0.5973467573471534, 0.5045154269739422, 0.8130401201959736, 0.4069519711717299, 0.6908584625832975, 0.08024465826430904, 0.4034879800949519, 0.9632524740402288, 0.4014922150521413, 0.3963972534090223, 0.5733425930274739, 0.19751760487701564, 0.909108356284355, 0.13759579961925517, 0.9989105282016169, 0.09359272329796098, 0.6083995873270097, 0.3993826682085432, 0.4474621981040193, 0.22059994298495766, 0.29756029661656036, 0.8667598494121659, 0.3716052793207977, 0.9762132789114173, 0.8350456658640396, 0.9718186157046185, 0.3114877301424803, 0.309787551961768, 0.6545646496312353, 0.9275727776534092, 0.8199053757747232, 0.48028683340887424, 0.010654086314614397, 0.5911456075185337, 0.5381752820714456, 0.5833810672845272, 0.04694099442586386, 0.23913218382818213, 0.5097091591492395, 0.7806173352521423, 0.9071908120892266, 0.9240904730402231, 0.9171866897309018, 0.8284997795481003, 0.9124499181452957, 0.5846864673609802, 0.5836211163414651, 0.39231739461911874, 0.24690885797819595, 0.25791138108197376, 0.6232841671980645, 0.7195462913472066, 0.9509081019685632, 0.37313122020789624, 0.446508348547497, 0.8311776810103837, 0.814627849351736, 0.788545558390207, 0.9395286688366479, 0.9068063867307952, 0.32021220774257564, 0.6067536270328047, 0.8185474828993201, 0.8023366201133293, 0.12602323855037567, 0.1828795195126316, 0.7464364793940462, 0.6053211257104096, 0.8492602544787903, 0.12334357389929262, 0.415126865943646, 0.9278835452747056, 0.9349735835507036, 0.3802832905915863, 0.8971448039295247, 0.9373103883876781, 0.9300111067480353, 0.5237263493504855, 0.22653197606449815, 0.7617387375548524, 0.13282566619710356, 0.38504961489587963, 0.9451589686457743, 0.07868482337127514, 0.6248004051496131, 0.6183402410940789, 0.979940579246502, 0.25790042669770796, 0.18246518952269364, 0.675556961238407, 0.8953982446050822, 0.3110337644433854, 0.5157131159928994, 0.9744473890024036, 0.8508549821430265, 0.48730027068923987, 0.777533228748601, 0.995593590208506, 0.2837039631829177, 0.43938307699297496, 0.4620334166990011, 0.723107349119294, 0.09420467485258888, 0.6358792287974563, 0.31726017863820344, 0.5930856036385725, 0.5441751974958483, 0.596162528868908, 0.8707416551484265, 0.11750711181456241, 0.40952358344652195, 0.6613449493091041, 0.2089823679207996, 0.5444114035951964, 0.06336970146907905, 0.3610467807780603, 0.7769675152770383, 0.43796322813378274, 0.4939182688892382, 0.41612909006871357, 0.7523182376138786, 0.20859115527827465, 0.7484461563925388, 0.662622815355134, 0.8239554601995842, 0.852255633481237, 0.7752363840083065, 0.12470946016078477, 0.562773191894562, 0.9990280664878824, 0.4494102536129029, 0.3046107043801658, 0.5988290223128836, 0.19903409997509125, 0.08228282521630947, 0.2020675186738503, 0.043358117348048286, 0.8419077239100892, 0.7540250387927822, 0.046271322976731866, 0.6124091682540836, 0.006137159987272489, 0.15178062693450456, 0.8961505092812037, 0.9204991760650401, 0.5099182302513531, 0.18985461509881563, 0.9926969179162485, 0.6272772781313145, 0.09077336956245363, 0.1818656855562738, 0.8998689136947536, 0.040278751596603546, 0.854872151555447, 0.29171322399974076, 0.9197058545628718, 0.5231534736319071, 0.8488918090714456, 0.5553163340052903, 0.5634259776294583, 0.2760854765726444, 0.7923997649051309, 0.9287718407921433, 0.100083445256405, 0.680136827006188, 0.8457131221657718, 0.2667047535493833, 0.9388271720497359, 0.28860383626150166, 0.27213245118410934, 0.7912675733315343, 0.5710334996693108, 0.9780892928256034, 0.6358918661058398, 0.2160364168164708, 0.018842517733940523, 0.40712350774186135, 0.29471643562288863, 0.8706572141334441, 0.921015038238595, 0.3388423987647393, 0.046720193680717004, 0.4681292967780236, 0.3873975557043752, 0.9086838537441054, 0.013682127465866167, 0.18565119619491688, 0.2290507680468068, 0.1630431130315817, 0.9722318702949183, 0.819752047558142, 0.2105155210352091, 0.9782962365123522, 0.8479273495644828, 0.5562785569675941, 0.07948814638457902, 0.8788196477573362, 0.9383257802184702, 0.9619484050177134, 0.3089158646854421, 0.4786287651548705, 0.4147956990833652, 0.27214863041083226, 0.3226959783328355, 0.9914698825678759, 0.805279151866373, 0.7688957978783749, 0.8066212236271963, 0.5981485863866867, 0.8081713104390088, 0.5055870576063283, 0.40127655905750237, 0.8245271134324578, 0.258245968899807, 0.5741087177641174, 0.8742104378384697, 0.845232971814897, 0.6906603176269961, 0.8392583288050085, 0.4207571041023982, 0.3397403865410441, 0.5543357668129845, 0.06420324415251599, 0.1734590133390691, 0.15174876080277877, 0.8070029375494967, 0.9772222507256696, 0.7819143100326902, 0.8272697764809542, 0.9632778907632717, 0.31128358786273247, 0.015780670810736974, 0.34169242777375275, 0.34746173761943777, 0.9016760028102422, 0.28789843871875376, 0.427836099748939, 0.7895891469708355, 0.8287644199071691, 0.24653800241055912, 0.29579891612606535, 0.4959246481113829, 0.4075180462167367, 0.8630527133201956, 0.3225358985840746, 0.45259995666348507, 0.11047805066246874, 0.15784880860892525, 0.6801965280744687, 0.7144449201613725, 0.07185538866587715, 0.8600874580654525, 0.1413489823593801, 0.495129708473908, 0.8065613445522369, 0.7271263449106691, 0.7761426345882089, 0.5447553128314743, 0.47180386453619627, 0.9470146190851161, 0.6096758105284678, 0.81267382334819, 0.09322968670330378, 0.3179022623748985, 0.5704183023971419, 0.25110673985844134, 0.29876292874579324, 0.7759557637824563, 0.44538802256476395, 0.4202870241589939, 0.6708488159713832, 0.8348573279009393, 0.8944106891613797, 0.26643607903387834, 0.8579276255335873, 0.3092232150279193, 0.4874379314315822, 0.23009728233968074, 0.6583663108921768, 0.191399455417818, 0.024204800756103206, 0.05052911678800842, 0.8763096204232189, 0.5011663364836386, 0.255626335298874, 0.777722629115866, 0.49430541547793305, 0.201801692543503, 0.874152437179804, 0.7661274794318871, 0.3731594141295158, 0.012594608773900617, 0.2664326444122004, 0.20169969925656672, 0.8878303526753131, 0.01341291066570982, 0.7824697402287112, 0.47897618434594436, 0.9077334140031437, 0.07656410276102354, 0.7718449192339395, 0.8245626244687856, 0.48964886652295436, 0.21279254530399083, 0.21790037423402275, 0.08396101805904987, 0.07063697399761626, 0.7414397636706472, 0.6488421862002427, 0.026688916319550504, 0.452100716746036, 0.14946338422838767, 0.19010652703288922, 0.29768081602064045, 0.39835401084549205, 0.3788763696865308, 0.6046856053675782, 0.3059239827222081, 0.4972930449909616, 0.6534382863592881, 0.6221644680494862, 0.7990814611604187, 0.6185988675893694, 0.29067401787891123, 0.6101846359401567, 0.2141742059725007, 0.6399653237078059, 0.7704062179306667, 0.9899118548808317, 0.09483014540544699, 0.7198899252046668, 0.6235369827746622, 0.1014223473827458, 0.45141326259662884, 0.5359354932167162, 0.7847807706063674, 0.013601356447064061, 0.37290970288339054, 0.6697417766181251, 0.7986210400858545, 0.05111199778895548, 0.5917853100786763, 0.23689314125295224, 0.2879330893613068, 0.24319203418107005, 0.0705875583592015, 0.04850965199351387, 0.2965520096334008, 0.22731710712946906, 0.3791001671088987, 0.09116633030951571, 0.003161643532820557, 0.5788324365360623, 0.30018855534700284, 0.34111485277114006, 0.45909751120261677, 0.6845298490060495, 0.7464014957030628, 0.20273062863677793, 0.7016257325646206, 0.8721676867837501, 0.9598072529391136, 0.5140960392476059, 0.4675643632940164, 0.5893066222098934, 0.11724483831312471, 0.9687321725400863, 0.9256292908222438, 0.19274338382847755, 0.50713325296572, 0.3187518192289692, 0.28980451656127826, 0.4712033468705019, 0.9236974836649949, 0.45174746012846156, 0.7526252013603677, 0.8115776661401731, 0.5403652815551301, 0.5349181705120207, 0.855090919115041, 0.4911854392120538, 0.9214222416338209, 0.7096679881390793, 0.6680628258652926, 0.648801426088525, 0.6081793876938826, 0.1386923364023822, 0.9204390458058528, 0.22433730841073418, 0.4674609534047509, 0.67714731810095, 0.09908477312863806, 0.725974084871251, 0.5750920106421858, 0.19082086826761124, 0.18028868373782125, 0.7885382816546854, 0.6366193539437264, 0.16426570150460196, 0.21646585593670464, 0.8860614294487653, 0.3589733270516654, 0.5575908986799576, 0.9519088814620531, 0.7849366514599235, 0.9265922118006196, 0.21615148448978794, 0.8340902611106918, 0.5141396022406695, 0.5160736894040722, 0.6919885048933402, 0.9514442092948073, 0.7410245535042598, 0.3125643404266064, 0.013190787684537186, 0.8709055477757583, 0.31775523412048756, 0.09262426823853842, 0.06319989545671545, 0.24767385544288922, 0.03644509343919555, 0.19139623058816846, 0.9189292770037563, 0.48674316744771695, 0.1096769323200868, 0.196481399342337, 0.05079419858625778, 0.11838912587052153, 0.9148053156331513, 0.6609132982883819, 0.09953053871172568, 0.22417311568300347, 0.7868085526936249, 0.4039290686342272, 0.17384172476775728, 0.48290295972525654, 0.400677550728207, 0.000677905796406475, 0.8380787818171512, 0.27338503613051757, 0.45508435381130075, 0.7724482754353529, 0.880306074882969, 0.6534635148126098, 0.030164561257271072, 0.03203719813946959, 0.029487142012581846, 0.08065135235244192, 0.016610301731561417, 0.13976862035572357, 0.7266805008187736, 0.3805111529662628, 0.7902329582791843, 0.7856534945315925, 0.7369416486167958, 0.0029154495736571917, 0.41757851209219, 0.820570515933666, 0.09741115279825074, 0.2799131076063386, 0.5469564697262916, 0.8820279358788958, 0.2267980524100508, 0.3451442418046603, 0.7678919762995949, 0.8653313691636285, 0.8656216296327993, 0.7655993466330918, 0.8110382635666983, 0.3483236552862772, 0.7452455562958151, 0.08036873990933047, 0.6683539072877462, 0.6889660841314379, 0.293557511557762, 0.26538543223398114, 0.6891193451721862, 0.20893896935290968, 0.9640409362260252, 0.3020024432337386, 0.7480552449644036, 0.022493395429597274, 0.9726127997485071, 0.9143517795114549, 0.2575924109355764, 0.6534797993917613, 0.19905866430220664, 0.14887808574672057, 0.5012114754450577, 0.06320575683269769, 0.4824058782603091, 0.34090626392910295, 0.1809913097791911, 0.04097567728970941, 0.7338913647773149, 0.9969697902003287, 0.1922298615126642, 0.6242470807866466, 0.8075548479348412 ], "segment_count": 1 }, "SPEAKER_02": { "embedding": [ 0.30693486531318637, 0.9640096313400186, 0.2684086241428929, 0.49581683577959423, 0.06780930577772226, 0.12445683905086957, 0.9432985667922728, 0.9526568893694036, 0.6181242329912323, 0.2851412562809267, 0.790745535560756, 0.6793400943441121, 0.3062304082700644, 0.042746741749154715, 0.4668836489491497, 0.8557197239864113, 0.3239480448018255, 0.4322197043073227, 0.9722737343160964, 0.5337069787287826, 0.28325840969291405, 0.9376484164077502, 0.7012569590650781, 0.10079478818219745, 0.71528669691937, 0.5693989084894397, 0.18528557688685454, 0.4155036200911538, 0.623095828807186, 0.09746517757017903, 0.7664420237248116, 0.8946446975398074, 0.009986796769153261, 0.09187913719774166, 0.9240751350055263, 0.5228557226697051, 0.32991403773753647, 0.9442890882748374, 0.6294399206536452, 0.9969902637859359, 0.6318445090369808, 0.7176367744728134, 0.5969741426149243, 0.33495116395632585, 0.20531306114169656, 0.6288526132481347, 0.6062007473371558, 0.729029049677363, 0.6486948089385544, 0.838707735395433, 0.6760169363572159, 0.4280507895533734, 0.6091658825230094, 0.9951129286906156, 0.8709173863010102, 0.25566172109260743, 0.30407502978284806, 0.90559975965537, 0.6750418500614196, 0.562165332414408, 0.004782300345209323, 0.8231313239591618, 0.7757873936231308, 0.9834549740406056, 0.273442440676794, 0.18630004181954707, 0.14048736666290051, 0.9308155970527925, 0.7029064267764018, 0.809180789069052, 0.050243691513942146, 0.17302196101285028, 0.6930558767689353, 0.9050321620806125, 0.39239132488786044, 0.7402117136544192, 0.4672804275117476, 0.30346356463508717, 0.9491299491000043, 0.14828166611234173, 0.005091841800398678, 0.649267190656875, 0.9295484373567329, 0.8101083461904254, 0.025430765894305263, 0.23757990511221905, 0.6683207600982506, 0.7291728997263318, 0.3148027349661947, 0.13238683108340799, 0.9190443784027383, 0.9424674715910593, 0.1200559962303065, 0.3576944459525183, 0.8488427324546388, 0.2258032747873312, 0.8434292976287836, 0.26104991900923735, 0.5246822700953931, 0.24467387893955628, 0.42271746067681304, 0.5768272452020484, 0.271278037209138, 0.27364319854678865, 0.3495172702031134, 0.3441316092516551, 0.05523568373078891, 0.5927879033829769, 0.42550308704301865, 0.8691558538253691, 0.06076301914233273, 0.7992143310777398, 0.29030352747072297, 0.5773526253252316, 0.2222043361152819, 0.3660429010709799, 0.3001778677885206, 0.38942101992703015, 0.182874731036881, 0.9023175678301325, 0.04469024636830177, 0.4123731704906859, 0.862037311627644, 0.8639490575219484, 0.7324007009321705, 0.3240038488970981, 0.13467208916358264, 0.24180715701474942, 0.4489030275204112, 0.5314631180967134, 0.23159903217253353, 0.7613133663283912, 0.5774432540498655, 0.9398519636442126, 0.38023764129251436, 0.29354750762596393, 0.005379241470578222, 0.2642445979911886, 0.406950923816523, 0.31124625494859315, 0.6024941471999972, 0.6975125174123782, 0.168961828933342, 0.8206236927503608, 0.7871880479724421, 0.5493724378880075, 0.43590141548184913, 0.7023422337889831, 0.13346281114871295, 0.617533547959616, 0.8150119454556944, 0.5894165696133513, 0.9003084524523675, 0.3550423925470073, 0.2232559499735134, 0.9396450136559736, 0.2864123645055663, 0.4914877099729035, 0.8744660728912775, 0.7646231801507782, 0.4451391934302461, 0.5662345552240278, 0.5087364476447704, 0.7545016964539013, 0.8320357297599205, 0.21472865720313217, 0.2414023885580463, 0.1842990380651338, 0.29905298292163185, 0.6888617571373816, 0.8698155577702497, 0.1889180625818645, 0.36613251759263665, 0.40203116417973284, 0.03592746791347645, 0.020863895238501518, 0.9928132369591794, 0.8664775373324959, 0.17616272349411144, 0.5876285451664156, 0.8742329742527101, 0.19475911725148676, 0.045665579683630386, 0.41207976331888163, 0.9352167457522431, 0.7541618301695228, 0.023230756649030515, 0.3165518400369858, 0.11206697297161328, 0.4712851757023243, 0.314101474431537, 0.012441295968388388, 0.8398112680701443, 0.6599008597598603, 0.9033050921449445, 0.24593139495415917, 0.8743209445704421, 0.7804992158182298, 0.6333533378839051, 0.9207617880354186, 0.023361421147960804, 0.8523354193768068, 0.5521400244623073, 0.2921874399304941, 0.7138062071519337, 0.18497280150764395, 0.728215195405716, 0.04978871433409637, 0.9971573695905062, 0.24784893818915155, 0.9893976874578629, 0.44787206821023307, 0.7799375105802012, 0.9662244387086028, 0.5674290777795237, 0.3895940996792907, 0.7702458161494504, 0.8584281222384057, 0.519098703916568, 0.5095770482679528, 0.06745004221782569, 0.7453011916765883, 0.3759127713854977, 0.49482502098845915, 0.1615614237846048, 0.46919541427108435, 0.354425692404404, 0.7886707316608692, 0.15152483404505546, 0.6792115933639717, 0.9146460422358522, 0.023890473737761764, 0.08272605554097778, 0.47034097208882053, 0.895376592559822, 0.7592397936957771, 0.33484861567329127, 0.6335966715451986, 0.9427112957950755, 0.8422589639511967, 0.2376657693815143, 0.30575555398034815, 0.758257898715414, 0.5490213372054714, 0.35694169045927004, 0.2521943771048958, 0.02058784368923461, 0.2629392953173505, 0.8380906998680027, 0.37505978010382246, 0.665568334471709, 0.2615444042125359, 0.696006924636629, 0.08847423915341246, 0.8841051385404953, 0.08445938985778467, 0.4925898133817781, 0.7041264423566896, 0.24301957659370677, 0.6325756786655962, 0.59459591600108, 0.9289920901171934, 0.28877367753604954, 0.48559132629105217, 0.025737157786149156, 0.3215109300372031, 0.20503898711947466, 0.9661539204823306, 0.40204680143430904, 0.6291132884066518, 0.5497692115745547, 0.6438141853099787, 0.8544258522903955, 0.9603554702756998, 0.19109252261597298, 0.034023821180269365, 0.9331661687663897, 0.4433393487568732, 0.9315065888770283, 0.5548314118709778, 0.7488118351487187, 0.36312006952765186, 0.12262500398993081, 0.33077517173145277, 0.19904192932393105, 0.7355913070831602, 0.8149485168500514, 0.40778243068397557, 0.5148834525942518, 0.15979806799796492, 0.59173213163104, 0.6066476326876001, 0.402002375155346, 0.7674338911913315, 0.49813067912854214, 0.9772374821031388, 0.8784773732366649, 0.5644356940484038, 0.927178545749541, 0.7348197490285813, 0.5409794545895121, 0.6902546969028817, 0.19258328814362535, 0.5384050394382845, 0.673017588574522, 0.5178495176517152, 0.006502021986546369, 0.7910203544888321, 0.7080099287398866, 0.39614022541998484, 0.36552874167211025, 0.43228440509627786, 0.2763489049770448, 0.2871123735506066, 0.8774391295387418, 0.9149568160318332, 0.26255028991103735, 0.9443293463462583, 0.11758704071169046, 0.38770505169394087, 0.53524706294688, 0.402468130630123, 0.9183212660121304, 0.3567848575684509, 0.22743822837883976, 0.5117844117137498, 0.7557739949563237, 0.11270465414735653, 0.9223866493024723, 0.38013989815199567, 0.9396104513889658, 0.7829728412671231, 0.5186572449044561, 0.8288804016877104, 0.3060970260902821, 0.10986011209881186, 0.7084616486349806, 0.43894824912318997, 0.9527874712923003, 0.5383701606068632, 0.6610517315864288, 0.5090116074830261, 0.14068717478875326, 0.4588862113285128, 0.3269277079855616, 0.02351437692290037, 0.8468425531172806, 0.650800644043556, 0.5077437952701417, 0.09820854428035608, 0.5955942058753865, 0.17899413934018715, 0.7704497042765056, 0.7535201998654312, 0.2785806106208012, 0.12005010314039921, 0.5382913863933546, 0.8551200608157558, 0.03568677950221344, 0.2407816155815703, 0.5326007756346247, 0.7010207658319024, 0.9046774664391303, 0.8726952783837065, 0.9440295294060853, 0.08986292738625545, 0.3820158423393514, 0.6244599476135808, 0.5524684562370841, 0.47930847884400485, 0.7166973796266359, 0.025942169967979378, 0.8679756808841189, 0.3550040764373742, 0.9004385028620769, 0.0031460269812378927, 0.345223264657037, 0.12729064831419157, 0.3814100036231628, 0.05463857186233978, 0.8270300838851692, 0.5170167194632794, 0.3668818946121384, 0.5726170129655945, 0.6810287586256978, 0.4338475953392301, 0.031232784616085807, 0.6252868981414528, 0.09787642833985122, 0.6646977265163754, 0.38833722115119185, 0.15107276553386761, 0.4010850335473196, 0.7179645747262199, 0.3714385842990233, 0.22483762875831048, 0.2124494171394573, 0.9956885278050217, 0.3081696229034232, 0.4814149816020641, 0.1951583927162419, 0.867303275750641, 0.840345242750179, 0.008942618068303876, 0.8376227496750901, 0.8548070457625208, 0.46282992151971747, 0.5678477053159195, 0.632124013865878, 0.09463650955715808, 0.8458916000236912, 0.1726479793533735, 0.5862615029213757, 0.6903028504116351, 0.08169665838306783, 0.9257775995922534, 0.8106760432371508, 0.8737053323196294, 0.7182206539829299, 0.653565961486485, 0.7461688046108759, 0.5835740954779061, 0.8052858137647212, 0.9430466384796767, 0.3380016345338468, 0.6122060318846471, 0.5484299663835633, 0.31266002019588535, 0.5441687828695053, 0.2855213715786843, 0.47470222917818927, 0.563606167220064, 0.7935254596662529, 0.9770821196829531, 0.5568273422542203, 0.801588290722673, 0.464652545795881, 0.6508196679471502, 0.5173949359049613, 0.6608540877692145, 0.25729676357280296, 0.2643197635200889, 0.9145111762468764, 0.9041170333881646, 0.8107053812326168, 0.12609854424174505, 0.644034240082284, 0.23233509062013735, 0.3735769686462671, 0.15013550152276267, 0.5437099751940339, 0.20038712893591337, 0.5062276924278812, 0.7214960451004309, 0.9128633678006438, 0.3960849999689424, 0.4263698372486803, 0.40576874518949, 0.022257628039816457, 0.20235134051713388, 0.5313065941195, 0.842689153144347, 0.4566028203304261, 0.2557746253254902, 0.8009224003304019, 0.7659302217211844, 0.20085889176182992, 0.8306871378435899, 0.4448666276614911, 0.3735900482525173, 0.6254461422087189, 0.48783098300857175, 0.8778071512121128, 0.47177984738272605, 0.682603935973131, 0.929169715210128, 0.8892250780460451, 0.4111522375531058, 0.13365288520728913, 0.3120380035033803, 0.7984864032017381, 0.24015502437426417, 0.5457497036761529, 0.890007500944586, 0.5685793153960313, 0.6990666107069509, 0.6892292364953263, 0.5673248332133092, 0.1413293658946696, 0.8982356945551145, 0.12549336592614224, 0.2716253508049393, 0.8077938258575469, 0.2915558081948799, 0.60598949677564, 0.7414759866434346, 0.2485467603996655, 0.3003699806254412, 0.6402764275641949, 0.2357576391962123, 0.5662213224449603, 0.8960012854024526, 0.9502092269488953, 0.2413110393027983, 0.29916318200428726, 0.48983065074373056, 0.6354006743965406, 0.9718653551835948, 0.9052413614070606, 0.9816567574015488, 0.45447833995008524, 0.9077139907437559 ], "segment_count": 1 }, "SPEAKER_04": { "embedding": [ 0.5428955550212569, 0.4811925797574774, 0.8931297431659411, 0.032599243724867555, 0.6118148562727891, 0.9579700352730007, 0.9435378601180437, 0.06470087759070053, 0.42432946877104205, 0.7493599395036095, 0.5925125792534616, 0.3987886688009833, 0.3026780721979765, 0.8054308701450139, 0.9029220730528197, 0.2680596451245991, 0.7956153855144289, 0.2517390594013633, 0.09981469360355699, 0.4677149244329397, 0.6055935039555624, 0.6939344301745826, 0.9580206201401336, 0.7117515254982291, 0.6641834031710269, 0.01371147916748805, 0.34881094940011403, 0.009082384730879078, 0.5931870205811106, 0.2679282116726315, 0.14173205573549075, 0.20961905810742065, 0.6972514658665034, 0.5600936342517069, 0.7955419209547546, 0.23132871054546988, 0.9769465857392976, 0.129205241819488, 0.5860262661467794, 0.732752303746544, 0.886210619893177, 0.5747763283607812, 0.1872878200222019, 0.3669502339785533, 0.8283713544061021, 0.8439465468632537, 0.28576133047233343, 0.8949411743462041, 0.08568629038658881, 0.6475821137255173, 0.32494055384143317, 0.8851712152422426, 0.3965940860109346, 0.7783644316103332, 0.7722797116498079, 0.14884675688203497, 0.662928129579774, 0.8854343221183859, 0.609935053667457, 0.9529423630072859, 0.9709908964945261, 0.19347663055350228, 0.3360760116947875, 0.30253220019248794, 0.18993450407491919, 0.3728031205964508, 0.19724744623772694, 0.5957787883970369, 0.9732961285258773, 0.11822469500938004, 0.3429205881370644, 0.3836000859310691, 0.5204419082621473, 0.42603202431877996, 0.9734516215066156, 0.24588329458533598, 0.9243888837972178, 0.6302166623128004, 0.14696220104546587, 0.30598109977197485, 0.09083313530345372, 0.3045181148676259, 0.1783011735881711, 0.8044141709075602, 0.4032777161149881, 0.36750538083353956, 0.08173137879627212, 0.04675355596783226, 0.6234191413534016, 0.5621599115247615, 0.8386231104871891, 0.30769118168167664, 0.7002307539243074, 0.3810542667152014, 0.6526748375062686, 0.13590925384801655, 0.23504540360469228, 0.9048628514284119, 0.7599013746605235, 0.8163580595942684, 0.5487330494554266, 0.44178575690111566, 0.9335089873594935, 0.538806910222011, 0.7821989555274611, 0.3583645650932874, 0.10603271216029797, 0.12033907358697227, 0.9308621076752349, 0.20182693847380717, 0.9594523229610212, 0.7210459008572185, 0.39566803150548513, 0.07448442376088116, 0.9214645561430455, 0.5043065427303102, 0.9200760655933048, 0.6366730683551096, 0.6883647267412155, 0.7971830994232355, 0.6732511057725167, 0.9226072750115429, 0.7942337478293406, 0.8979108982416174, 0.2259606862813356, 0.49457218367526967, 0.8849300894079407, 0.6621502710142392, 0.7765243880593865, 0.47093827072966987, 0.5627251504765322, 0.8570597189652105, 0.21730645542791072, 0.6097396385225732, 0.0421003637293228, 0.2400475784559677, 0.03595562438788236, 0.7460269624909032, 0.6690726398623906, 0.5482973061843436, 0.871010964672239, 0.1911682544390646, 0.8008665859464233, 0.47998839011877603, 0.10837882947075361, 0.7449633703131899, 0.63205485663963, 0.7033754164672902, 0.6073903158041939, 0.3306947997033711, 0.6764835929584209, 0.04428985518823203, 0.4444639359157381, 0.35122015486830527, 0.10757864062340328, 0.19355722499957073, 0.6695875129987889, 0.5294688226879997, 0.5117202072983715, 0.8776753459023777, 0.3503662822829209, 0.766608509239275, 0.6065610603461016, 0.966763264696648, 0.5784166868116662, 0.9420520074067923, 0.8346055483395265, 0.6990132379749143, 0.5644439193312416, 0.03321346741889497, 0.9678836784253284, 0.048508092090002064, 0.2775161053873523, 0.17932105369694906, 0.7461677668051075, 0.03184167649510061, 0.9296252843010956, 0.21119309931435315, 0.749759369209233, 0.9211603109599675, 0.11142608547930277, 0.9789428606023572, 0.16555960747459875, 0.5440479264251249, 0.9129555244369797, 0.16256314238321212, 0.5024745373712445, 0.19213358987673945, 0.8629837208706707, 0.6463887784984945, 0.15212691742887186, 0.2820745678791179, 0.4881410922206625, 0.5782627469923536, 0.8793309270064242, 0.6187806588457897, 0.5903159243734534, 0.9525647490371936, 0.253626628668998, 0.16052138695676266, 0.09458763096203093, 0.3199489627920453, 0.669767165969647, 0.5772280454849439, 0.7040082556256262, 0.19830636970262017, 0.5720410278234477, 0.8003496647083371, 0.2518569935286289, 0.6433159221464931, 0.26297164569690346, 0.407494587601683, 0.4398564170287256, 0.46260481137468346, 0.7526013418314977, 0.9318439104320452, 0.9299930669676958, 0.9567839297008572, 0.7452363445676308, 0.7471961512041781, 0.35949167645830205, 0.7158716208063082, 0.6486886219426632, 0.23058720094290963, 0.4613945259506227, 0.3994402326733394, 0.8770529257737422, 0.23078719893430477, 0.5414636263982714, 0.3147608984643717, 0.7659924451012569, 0.31095763201445115, 0.7712063280058246, 0.9852666187006633, 0.7281670679347247, 0.9038850780500689, 0.14416969229060195, 0.8535932437369063, 0.4670150290403572, 0.060142967885255305, 0.12252385881751715, 0.0027519669097758603, 0.9258070869460582, 0.13316889995562442, 0.3922444661883058, 0.6408440335707076, 0.8711921003393184, 0.6823211126411127, 0.27305542991501563, 0.8653977413637558, 0.22916209559720502, 0.2761782049205702, 0.4308860309177811, 0.7411212793471543, 0.3139529663919437, 0.9121719503172429, 0.5710852259148339, 0.4322662603469536, 0.4268751217016894, 0.150597279538628, 0.8759674929252251, 0.1823570172679696, 0.6668576724147618, 0.7925873677880777, 0.7891692102118915, 0.2853767955054638, 0.9652232215725585, 0.647376808458671, 0.32309610753580553, 0.7692281613979113, 0.8204656006657459, 0.5093707267336569, 0.7231760380143487, 0.8487967088946227, 0.6749993125096427, 0.7564221494167127, 0.5004679004901814, 0.6192218548894597, 0.22212148577056723, 0.650591587154947, 0.7490760224903342, 0.5566873213028385, 0.022104332295119655, 0.5913278115521408, 0.08680029827719593, 0.6272317109993232, 0.5761469212731701, 0.5032745724855484, 0.49848753152471326, 0.04397621575125432, 0.5133987298917666, 0.8846359450193584, 0.3732566189742822, 0.6932158164374559, 0.5971666473076088, 0.6397969502681949, 0.9805324126120355, 0.3002190231798565, 0.07899348897997915, 0.15516777417228866, 0.9485095312275672, 0.9600145681410246, 0.16398863812070374, 0.9776322288611311, 0.6392247036373254, 0.5595082939654489, 0.40268334473082723, 0.5356172268195959, 0.7091659110887778, 0.18200286830193957, 0.15046641450819975, 0.06116440912031662, 0.11228117659129622, 0.6978405089492571, 0.35190434599533527, 0.6947273271992015, 0.003972618291925856, 0.25500479863841896, 0.22717877206732107, 0.2467631012145547, 0.29790622547016565, 0.5478423158298327, 0.17777341544969105, 0.9553897875005106, 0.4279274013284635, 0.5598854532116772, 0.6589870350202497, 0.009968362450700985, 0.2625004288611744, 0.850372898250663, 0.1217900927758192, 0.9741119422817843, 0.7443716258882732, 0.07623728834623067, 0.7638031177596345, 0.11705873919087662, 0.275741270978597, 0.46379709520888646, 0.09657735712341797, 0.6216530402424186, 0.13694882060912894, 0.9700932427961968, 0.4667043022617845, 0.9918663267613491, 0.3175535874599713, 0.1052831361993537, 0.9416140513550314, 0.6619009810932636, 0.94247428467554, 0.11586979700218059, 0.5372761624660518, 0.1714695404159522, 0.4788802454364445, 0.5556531073406256, 0.7412494505480598, 0.3612756578517369, 0.41662300804497077, 0.24596283255077522, 0.20826770522364102, 0.15091631579918074, 0.8987585339673333, 0.7155350846282144, 0.6164607301391412, 0.058319484883833095, 0.7754867589419902, 0.800544357789766, 0.3756491993399549, 0.514638295372858, 0.7696376110106659, 0.6930608937553109, 0.38102462945457005, 0.7430201250826731, 0.7208204615795752, 0.30751758434691223, 0.9168862354267758, 0.4852468075935368, 0.43690573238363695, 0.7895358920640231, 0.8910302723663176, 0.13568686153890352, 0.6513909322093944, 0.6369791662051666, 0.5573393922807386, 0.2246400673880692, 0.8348990785805338, 0.733067603530911, 0.15996673107638748, 0.28711664122541514, 0.4758171867343103, 0.9901175612458879, 0.3265529783209309, 0.7002808669190663, 0.8125360953011005, 0.8456142089579395, 0.4951567606885572, 0.12009616875061269, 0.3164868878650392, 0.13937029329725004, 0.11159194268503903, 0.25656641825862814, 0.7255663581229255, 0.7532753241214091, 0.6695393096945621, 0.07511820183208251, 0.4657962007386687, 0.6893597571164485, 0.9041275821771158, 0.01629652981782337, 0.9695244816183236, 0.9065480274424421, 0.4409990662842249, 0.7021645839346805, 0.23979982841469039, 0.6797089077439981, 0.35822818361665754, 0.08010574305808527, 0.235091453918285, 0.4185426934201214, 0.17573714032186027, 0.07850384110785913, 0.9397549559387772, 0.22619573569691964, 0.6219248307370893, 0.9234214561376066, 0.559601974281744, 0.23885756778571754, 0.21367335711190671, 0.33399404694084855, 0.6263912067784574, 0.6486366880301973, 0.8338983496724749, 0.3928517363271279, 0.13266627149062882, 0.012842695568620277, 0.9584078307700631, 0.0005360415774063876, 0.313246115005415, 0.9791250731956885, 0.7721929189563236, 0.1894610293069936, 0.50035531079888, 0.7640214415522385, 0.9045736950186247, 0.8966936764215863, 0.6093429118773985, 0.24139652292654523, 0.6636280703837922, 0.3800713105156426, 0.4510005098731331, 0.5429235324140941, 0.4108564346113833, 0.6988622545122835, 0.33063904129162214, 0.09207375661961192, 0.3447873990888253, 0.34755463930593555, 0.6671310483474054, 0.7321767778853508, 0.5553042562359861, 0.1919574982320783, 0.34450195001123307, 0.5663686606210612, 0.40073034064186763, 0.44598917192259113, 0.6759336248763288, 0.7519682999824256, 0.23359202457069483, 0.8224339626490929, 0.11779790294319514, 0.3042929344103442, 0.2863953817723115, 0.7400855575282222, 0.5996865522002871, 0.5515837514408626, 0.5736909842184966, 0.21180834393954684, 0.735422395932794, 0.5428469965873964, 0.1531860745125173, 0.4068281603095165, 0.5439680069812004, 0.23818170571000985, 0.5795530310034225, 0.003337071365836608, 0.234564518290869, 0.42751577110732286, 0.2629104931400007, 0.3915813904366686, 0.8869029693726216, 0.9061148223841294, 0.8496382235353009, 0.016575721295285062, 0.6120539447149624, 0.5568689882000161, 0.6695202674195412, 0.8000979076741219, 0.9859252288963339, 0.07930495349382694, 0.5873521998063851, 0.636495013240553, 0.5041291741221395, 0.4787937448044909, 0.7084698834841994, 0.8931975224834071, 0.6880109455747883, 0.7057446422191647, 0.8487249314966459, 0.01823899986471411, 0.1475061896730041, 0.2995633932221681, 0.6789112026509133, 0.5102768937633293 ], "segment_count": 1 } } }
11111 ...
|-转 通义之旅2
补全services/audio_processor.py 文件里 def get_matched_audios()函数的的代码 ,如果没有现有切分音频文件的扩展,告诉我可用的扩展,我去安装。
再优化下 get_matched_audios() ,mixed_dialogue_segment_pass_list 改成2维数组,['similarity'=>'0.2','path'=>'...'],如果没有相似度超过阈值的(比如阈值是0.8),按切分音频的数量,比如切了10个,找相似度最大的2个(如果第一是0.6,第二是0.3那就只保留一个),切了20个,找相似度最大的4个。最后把符合的合并成音频。 20250825 03:16
find_matched_segment()
遇到各种问题,为了搞音频处理。 20250825 03:00
请注意,只修改函数get_matched_audios(),只解决导出的保存的音频声音变慢变低的问题,其他的不需要优化,如果有必要可以改 实现完整的音频处理函数,集成SpeakerExtractor类
async def process_audio(file, config_value, whisper_model, device): 函数,只解决导出音色改变问题。
通义:我理解你的需求。你希望我专注于解决 get_matched_audios() 函数中导出的音频声音变慢变低的问题,以及实现完整的 process_audio 函数。
首先,让我检查 get_matched_audios() 函数中音频保存的部分,找出可能导致音频变慢变低的问题:
20250825 0537
声纹识别找到了合适的模型已经可以用了,但是输出的提取的音频各种音色变了,有了杂音等问题。 20250825
我现反馈个情况,你现别改哈。输出的音频现在音色正常了,但是有杂音和电流声。我在网上查的原因分析“”出现「原来干净、合成后却带杂音 / 电流声」的 99 % 都是下面 3 类原因,按出现频率从高到低列给你,并给出可直接落地的排查 / 修复代码。
浮点溢出 / 量化噪声(最常见)
• 你在 get_matched_audios 里把 int16 直接除以 32768 变成 float,
• 之后又用 torchaudio.save 写回 wav,但 没有归一化到 [-1,1] 以内 或 忘记转回 int16。
• 结果数值越界 保存时产生爆音、电流声。
修复(两行就够)“ 你觉得对不对。切记先别改代码。
20250825 0553...
|-转 目标说话人声音提取模型训练的思路
我有个现有的代码用于从多人说话里提取目标说话人的声音(不需要完整提取,不是用来记录会议中某说话人的说话内容的,是用来RVC训练的),现在有个问题就是提取出来的声音偶尔还会有别人的声音,大概占比10%,我想把这些也去掉。于是我想到办法,把提取出来的音频,在和目标说话人的纯净的人声embedding比对,看目标说话人在音频中的说话时间占比为,如果占比很高的话,比如超过0.9就保留,否则二次提取目标说话人的声音。我想把这个占比的结果做成反馈机制,类似监督模式,整个流程变成一个模型训练。之后直接用训练的模型去做特定说话人的人声提取。
我有个现有的代码用于从多人说话里提取目标说话人的声音(不需要完整提取,不是用来记录会议中某说话人的说话内容的,是用来RVC训练的),现在有个问题就是提取出来的声音偶尔还会有别人的声音,大概占比10%,我想把这些也去掉。于是我想到办法,把提取出来的音频,在和目标说话人的纯净的人声embedding比对,看目标说话人在音频中的说话时间占比为,如果占比很高的话,比如超过0.9就保留,否则二次提取目标说话人的声音。我想把这个占比的结果做成反馈机制,类似监督模式,整个流程变成一个模型训练。之后直接用训练的模型去做特定说话人的人声提取。audio_processor.py里的主函数asyncdefprocess_audio(file,config_value,whisper_model,device):和defget_matched_audios(target_audio,负责的是从多人说话里提取目标说话人的声音。t3.py这里的代码是用于把提取出的人声的人声再次和目标人说话人比对,看时间占比。现在要解决把整个流程设计成模型训练的模式。...
|-转 python报错 can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
ERROR:app.services.audio_processor:保存音频或其他操作失败: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
ERROR:app.services.audio_processor:处理音频时发生错误: 保存音频或其他操作失败: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
ERROR:app.api.audio_router:处理音频时发生错误:
Traceback (most recent call last):
File "D:\python\fastapi-speaker-extractor\app\services\audio_processor.py", line 677, in process_audio
target_embedding = get_or_create_target_embedding(target_audio_path, CACHE_DIR, verification)
File "D:\python\fastapi-speaker-extractor\app\utils\audio_utils.py", line 110, in get_or_create_target_embedding
np.save(cache_file, embedding.numpy()) # 存为 numpy
TypeError: can't convert cuda:0 device type tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
During handling of the above exception, another exception occurred:
# ========================================= # 4. 函数:获取目标 embedding(支持缓存) def get_or_create_target_embedding(audio_path, cache_dir ,verification): os.makedirs(cache_dir, exist_ok=True) with open(audio_path, 'rb') as f: file_hash = hashlib.md5(f.read()).hexdigest() cache_file = os.path.join(cache_dir, f"{file_hash}.npy") if os.path.exists(cache_file): print(f"✅ [缓存命中] 从缓存加载目标说话人 embedding: {cache_file}") # 从 .npy 加载的是 numpy,需要转为 Tensor embedding_np = np.load(cache_file) return torch.from_numpy(embedding_np) # ✅ 转为 PyTorch Tensor else: print(f"🔁 [缓存未命中] 正在提取目标说话人音频的 embedding: {audio_path}") embedding = extract_audio_embedding(audio_path ,verification) # Tensor # 保存为 numpy 到缓存 np.save(cache_file, embedding.numpy()) # 存为 numpy print(f"💾 [缓存保存] 已保存目标说话人 embedding 到缓存: {cache_file}") return embedding # Tensor
kimi瞬间解决了...
|-转 Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!
根据你的问题和代码分析,这个错误是由于PyTorch张量和模型在不同设备(CPU和GPU)上导致的。我来为你提供几种解决方案:
## 问题分析
错误的核心在于:`Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!`
主要问题点:
1. 代码中存在多个模型加载点,设备管理不统一
2. 音频张量加载后未明确指定设备
3. SpeechBrain模型和PyAnnote模型可能使用了不同的设备配置
## 解决方案
### 方案一:统一设备管理(推荐)
修改代码以确保所有模型和张量都使用统一的设备配置:
[services/audio_processor.py](D:\python\fastapi-speaker-extractor\app\services/audio_processor.py)
能不能专门构建一个app/utils/device_middleware.py一个中间件,让所有项目下运行的程序统一走中间件,然后中间件统一设置device,device_middleware.py我已经创建
创建一个新的设备管理中间件,用于统一管理所有模型和张量的设备分配
[device_middleware.py](D:\python\fastapi-speaker-extractor\app\utils\device_middleware.py)
修改audio_processor.py文件,使用新的设备管理中间件
[services/audio_processor.py](D:\python\fastapi-speaker-extractor\app\services/audio_processor.py)
修改audio_utils.py文件,加入设备管理中间件的支持
[audio_utils.py](D:\python\fastapi-speaker-extractor\app\utils\audio_utils.py)
修改embedding_utils.py文件,加入设备管理中间件的支持
[embedding_utils.py](D:\python\fastapi-speaker-extractor\app\utils\embedding_utils.py)
修改model_loader.py文件,加入设备管理中间件的支持
[model_loader.py](D:\python\fastapi-speaker-extractor\app\utils\model_loader.py)
修改onnx_model_loader.py文件,加入设备管理中间件的支持
[onnx_model_loader.py](D:\python\fastapi-speaker-extractor\app\utils\onnx_model_loader.py)
修改__init__.py文件,确保设备中间件被正确导入
[__init__.py](D:\python\fastapi-speaker-extractor\app\utils\__init__.py)
修改audio_processor.py中get_matched_audios函数,确保音频处理时使用统一的设备
[services/audio_processor.py](D:\python\fastapi-speaker-extractor\app\services/audio_processor.py)
修改audio_processor.py中的process_audio函数,确保设备一致性
[services/audio_processor.py](D:\python\fastapi-speaker-extractor\app\services/audio_processor.py)
现在我已经为你实现了一个完整的设备管理解决方案,以解决你遇到的设备不一致问题。以下是我所做的更改和方案说明:
### 方案概述
我创建了一个统一的设备管理中间件([device_middleware.py](file:///D:/python/fastapi-speaker-extractor/app/utils/device_middleware.py)),用于在整个项目中统一管理所有模型和张量的设备分配。这样可以确保所有计算都在同一设备上进行,避免了CUDA和CPU设备混用的问题。
### 主要修改内容
1. **创建设备管理中间件**:
- 新增 [app/utils/device_middleware.py](file:///D:/python/fastapi-speaker-extractor/app/utils/device_middleware.py) 文件
- 实现了 [DeviceMiddleware](file:///D:/python/fastapi-speaker-extractor/app/utils/device_middleware.py#L14-L83) 类,用于统一管理设备
- 提供了设备移动方法,确保所有张量和模型都在同一设备上
2. **修改音频处理相关文件**:
- 更新 [audio_processor.py](file:///D:/python/fastapi-speaker-extractor/app/services/audio_processor.py) 使用设备中间件
- 修改 [get_matched_audios](file:///D:/python/fastapi-speaker-extractor/app/services/audio_processor.py#L127-L302) 函数,确保处理过程中设备一致性
- 修改 [process_audio](file:///D:/python/fastapi-speaker-extractor/app/services/audio_processor.py#L719-L801) 函数,使用设备中间件的设备
3. **创建辅助工具函数**:
- 在 [audio_utils.py](file:///D:/python/fastapi-speaker-extractor/app/utils/audio_utils.py) 中添加设备管理函数
- 在 [embedding_utils.py](file:///D:/python/fastapi-speaker-extractor/app/utils/embedding_utils.py) 中添加嵌入向量设备管理函数
- 在 [model_loader.py](file:///D:/python/fastapi-speaker-extractor/app/utils/model_loader.py) 中添加模型设备管理函数
- 在 [onnx_model_loader.py](file:///D:/python/fastapi-speaker-extractor/app/utils/onnx_model_loader.py) 中添加ONNX模型设备适配
### 方案优势
1. **统一设备管理**:所有模型和张量都使用同一个设备管理器,避免了设备不一致的问题
2. **易于维护**:当需要更改设备时,只需在中间件中修改,无需更改所有相关代码
3. **兼容性好**:支持CPU、CUDA等多种设备类型...
|-转 腾讯元宝推荐的项目结构(音频处理项目)
fastapi-speaker-extractor/
├── app/
│ ├── api/
│ │ ├── endpoints.py # 一般的 API 路由
│ │ ├── audio_router.py # 音频处理相关的 API 路由
│ │ └── __init__.py
│ ├── services/
│ │ ├── audio_processor.py # 音频处理逻辑,如提取、相似度计算
│ │ ├── audio_dataset.py # 自定义 Dataset 类
│ │ ├── audio_model.py # PyTorch 模型定义
│ │ ├── data_loader.py # 数据加载与预处理逻辑
│ │ ├── train_model.py # 模型训练逻辑
│ │ └── __init__.py
│ ├── schemas/
│ │ ├── api_schemas.py # Pydantic 模型定义
│ │ └── __init__.py
│ ├── utils/
│ │ ├── custom_logger.py # 自定义日志记录器
│ │ ├── helpers.py # 其他辅助函数
│ │ └── __init__.py
│ ├── main.py # FastAPI 应用入口
│ ├── __init__.py
│ └── static/ # 静态文件(如需要)
├── data/
│ ├── mixed/
│ ├── target_pure/
│ ├── extracted/
│ ├── embeddings/
│ ├── labels/
│ └── models/ # 训练好的模型保存位置
├── tests/ # 测试代码
│ ├── __init__.py
│ └── test_api.py # 示例测试文件
├── requirements.txt # 项目依赖
├── README.md # 项目说明
└── .gitignore # Git 忽略规则
三、各文件夹的职责说明
- 1.app/api/
- •endpoints.py: 定义一般的 API 路由,如说话人提取的通用接口。
- •audio_router.py: 定义与音频处理相关的 API 路由,如提取目标说话人声音、语音转文字、训练模型相关接口。
- •__init__.py: 使api成为一个 Python 包。
- 2.app/services/
- •audio_processor.py: 包含音频处理的业务逻辑,如调用 SpeechBrain 进行相似度计算、音频分割、提取等。
- •audio_dataset.py: 定义自定义的 PyTorchDataset类,用于加载和处理训练数据。
- •audio_model.py: 定义 PyTorch 模型架构,如 CNN 模型。
- •data_loader.py: 包含数据加载与预处理的逻辑,如创建DataLoader、数据转换等。
- •train_model.py: 包含模型训练的逻辑,如训练循环、损失计算、优化器更新等。
- •__init__.py: 使services成为一个 Python 包。
- 3.app/schemas/
- •api_schemas.py: 定义 Pydantic 模型,用于请求和响应的数据验证与序列化。
- •__init__.py: 使schemas成为一个 Python 包。
- 4.app/utils/
- •custom_logger.py: 自定义日志记录器的实现。
- •helpers.py: 其他辅助函数,如文件操作、路径处理等。
- •__init__.py: 使utils成为一个 Python 包。
- 5.app/main.py
- •FastAPI 应用的入口文件,包含应用初始化、路由注册、事件处理等。
- 6.data/
- •存放所有与数据相关的文件,如混合音频、目标纯净音频、提取的音频、嵌入向量、标签文件和训练好的模型。
- •models/: 用于保存训练好的 PyTorch 模型。
- 7.tests/
- •存放测试代码,确保各个模块的功能正确性。
- •test_api.py: 示例测试文件,测试 API 路由。
- 8.requirements.txt
- •列出项目所需的 Python 包及其版本,便于环境部署和依赖管理。
- 9.README.md
- •项目说明文档,包括项目介绍、安装步骤、使用指南等。
- 10..gitignore
- •指定 Git 忽略的文件和目录,如虚拟环境目录、缓存文件等。
四、关于data_loader.py等模块的放置
根据上述推荐的项目结构:...
|-转 音频处理项目fse
安装好了anaconda软件后,先按国内的镜像源,可以用清华的镜像源,
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
设置好镜像源后,执行下面命令
conda create -n fse python=3.11
直连的用这个命令速度更快
conda create -n fse -c https://conda.anaconda.org/conda-forge --override-channels python=3.11
conda activate fse
pip3 install torch torchaudio torchvision --index-url https://download.pytorch.org/whl/cu128
说明cu128就是安装的torch torchaudio torchvision对应支持的CUDA版本12.8,如果你的显卡驱动支持CUDA12.8 或更高,你都可以安装cu128,如果你显卡驱动只支持CUDA12.6那就安装
pip3 install torch torchaudio torchvision --index-url https://download.pytorch.org/whl/cu126
现在测试的是cu128和cu126都可以,cu129安装了后再安装下面的其他扩展,会有些扩展安装不上
所以建议安装 torch torchaudio torchvision的cu128或cu126
pip3 install fastapi speechbrain uvicorn pydantic python-multipart librosa soundfile pydub scipy pillow python-dotenv pytest httpx onnxruntime
pip3 install pydantic_setting (如果pip安装失败尝试用conda安装)
conda install pydantic_setting (如果还是失败,网络先直连然后用conda-forge频道安装)
用这下面个命令
conda install -c https://conda.anaconda.org/conda-forge --override-channels pydantic-settings
为确保datasets和modelscope兼容,请用以下命令安装确定版本
pip install datasets==2.18.0
pip install modelscope==1.11.0
之后设置huggingface的主目录和缓存目录(不设置默认是C盘的,后面重装系统又要重新下载模型)
Win10系统下环境搭建
安装提示:此项目不要安装whisperx
ModelScope 与 numpy 2.x 冲突是官方已知 issue,
在 单一环境 里 无法同时满足 whisperx 与 ModelScope。
最稳妥:把声纹功能放到独立环境或改用 SpeechBrain。
安装好了anaconda软件后,先按国内的镜像源,可以用清华的镜像源,设置好镜像源后,执行下面命令 conda create -n fse python=3.11 直连的用这个命令速度更快 conda create -n fse -c https://conda.anaconda.org/conda-forge --override-channels python=3.11 conda activate fse pip3 install torch torchaudio torchvision --index-url https://download.pytorch.org/whl/cu128 说明cu128就是安装的torch torchaudio torchvision对应支持的CUDA版本12.8,如果你的显卡驱动支持CUDA12.8 或更高,你都可以安装cu128,如果你显卡驱动只支持CUDA12.6那就安装 pip3 install torch torchaudio torchvision --index-url https://download.pytorch.org/whl/cu126 现在测试的是cu128和cu126都可以,cu129安装了后再安装下面的其他扩展,会有些扩展安装不上 所以建议安装 torch torchaudio torchvision的cu128或cu126 pip3 install fastapi speechbrain uvicorn pydantic python-multipart librosa soundfile pydub scipy pillow python-dotenv pytest httpx datasets pip3 install pydantic_setting (如果pip安装失败尝试用conda安装) conda install pydantic_setting ( 直连的用这个命令 conda install -c https://conda.anaconda.org/conda-forge --override-channels pydantic-settings 之后设置huggingface的主目录和缓存目录(不设置默认是C盘的,后面重装系统又要重新下载模型)
训练代码
import os import torch import torch.nn as nn import torch.optim as optim from torch.utils.data import DataLoader from tqdm import tqdm from app.services.audio_dataset import SpeakerExtractionDataset # 导入数据集类 from app.services.audio_model import SpeakerExtractionCNN1D # 导入模型类 # 参数配置 DATA_DIR = 'data/embeddings' # 数据目录 LABELS_DIR = 'data/labels' # 标签目录 EMBEDDING_DIR = 'data/embeddings' # 嵌入目录 BATCH_SIZE = 16 EPOCHS = 20 LEARNING_RATE = 0.001 MODEL_SAVE_PATH = 'models/speaker_extraction_model.pth' EMBEDDING_DIM = 192 # 根据您的嵌入维度调整 # 设备配置 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"使用设备: {device}") # 创建 Dataset 和 DataLoader dataset = SpeakerExtractionDataset( data_dir=DATA_DIR, labels_dir=LABELS_DIR, embedding_dir=EMBEDDING_DIR, transform=None ) dataloader = DataLoader( dataset, batch_size=BATCH_SIZE, shuffle=True ) # 初始化模型 model = SpeakerExtractionCNN1D(input_dim=1).to(device) # 根据特征维度调整 input_dim # 损失函数和优化器 criterion = nn.MSELoss() # 回归任务,若为分类任务可改为 nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE) # 训练循环 for epoch in range(EPOCHS): model.train() # 设置模型为训练模式 running_loss = 0.0 for features, labels in tqdm(dataloader, desc=f"Epoch {epoch+1}/{EPOCHS}"): features = features.to(device) # 将特征移动到设备 labels = labels.to(device) # 将标签移动到设备 # 前向传播 outputs = model(features) loss = criterion(outputs, labels) # 计算损失 # 反向传播和优化 optimizer.zero_grad() # 清零梯度 loss.backward() # 反向传播 optimizer.step() # 更新参数 running_loss += loss.item() * features.size(0) # 累加损失 # 计算每个 epoch 的平均损失 epoch_loss = running_loss / len(dataloader.dataset) print(f"Epoch {epoch+1}/{EPOCHS}, Loss: {epoch_loss:.4f}") # 保存模型 torch.save(model.state_dict(), MODEL_SAVE_PATH) print(f"模型已保存到 {MODEL_SAVE_PATH}")
. 代码说明
- •数据集与数据加载器: 使用SpeakerExtractionDataset类加载数据,并通过DataLoader进行批处理和打乱。
- •模型初始化: 初始化SpeakerExtractionCNN1D模型,并将其移动到相应的设备(GPU 或 CPU)。
- •损失函数与优化器: 使用均方误差损失(MSE)进行回归任务,您可以根据需要更改为分类任务的损失函数。
- •训练循环: 在每个 epoch 中,遍历数据加载器,进行前向传播、损失计算、反向传播和参数更新。使用tqdm显示训练进度。
- •模型保存: 训练完成后,将模型参数保存到指定路径。
5. 其他注意事项
- •特征与标签: 确保在SpeakerExtractionDataset中正确加载和处理特征与标签。如果使用不同的特征(如嵌入向量),请相应调整模型输入维度。
- •模型选择: 根据您的任务需求(回归或分类),选择合适的模型和损失函数。
- •超参数调整: 根据实验结果调整学习率、批次大小和训练轮数等超参数,以获得更好的模型性能。
通过上述步骤,您可以将audio_dataset.py和audio_model.py整合在一起,并编写train_audio_model.py进行模型训练。这样,您就能够利用反馈机制,训练一个模型来提高目标说话人声音提取的准确性。 ...
|-转 各种python 相关命令
torch.cuda.is_available()命令行查看cuda的命令
命令行(CMD / Anaconda Prompt)里直接敲:
python -c "import torch; print(torch.cuda.is_available())"
返回 True 表示 CUDA 可用,False 表示不可用。
conda create -n my -c https://conda.anaconda.org/conda-forge --override-channels mamba
用conda-forge的官方源安装 环境变量名是my的mamba环境 20250826 0712
激活环境后,没装python装python,装了python的话直接执行
pip3 install torch torchaudio torchvision --index-url https://download.pytorch.org/whl/cu129
具体根据你显卡驱动的cuda版本 cu129就是cuda12.9
如果是做音频处理,建议按下面这些扩展
pip3 install fastapi uvicorn pydantic python-multipart librosa soundfile pydub scipy pillow python-dotenv pytest httpx
20250828 0720
报错
Collecting anyio<5,>=3.6.2 (from starlette<0.48.0,>=0.40.0->fastapi) Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a1/ee/48ca1a7c89ffec8b6a0c5d02b89c305671d5ffd8d3c94acf8b8c408575bb/anyio-4.9.0-py3-none-any.whl (100 kB) Collecting starlette<0.48.0,>=0.40.0 (from fastapi) Using cached https://pypi.tuna.tsinghua.edu.cn/packages/f7/1f/b876b1f83aef204198a42dc101613fefccb32258e5428b5f9259677864b4/starlette-0.47.2-py3-none-any.whl (72 kB) Collecting pydantic-core==2.33.2 (from pydantic) Downloading https://pypi.tuna.tsinghua.edu.cn/packages/a0/75/4a0a9bac998d78d889def5e4ef2b065acba8cae8c93696906c3a91f310ca/pydantic_core-2.33.2-cp313-cp313-win_amd64.whl (2.0 MB) ---------------------------------------- 2.0/2.0 MB 2.3 MB/s 0:00:00 Collecting pydantic Using cached https://pypi.tuna.tsinghua.edu.cn/packages/6a/c0/ec2b1c8712ca690e5d61979dee872603e92b8a32f94cc1b72d53beab008a/pydantic-2.11.7-py3-none-any.whl (444 kB) ERROR: Ignored the following versions that require a different python version: 0.52.0 Requires-Python >=3.6,<3.9; 0.52.0rc3 Requires-Python >=3.6,<3.9; 0.53.0 Requires-Python >=3.6,<3.10; 0.53.0rc1.post1 Requires-Python >=3.6,<3.10; 0.53.0rc2 Requires-Python >=3.6,<3.10; 0.53.0rc3 Requires-Python >=3.6,<3.10; 0.53.1 Requires-Python >=3.6,<3.10; 0.54.0 Requires-Python >=3.7,<3.10; 0.54.0rc2 Requires-Python >=3.7,<3.10; 0.54.0rc3 Requires-Python >=3.7,<3.10; 0.54.1 Requires-Python >=3.7,<3.10; 0.55.0 Requires-Python >=3.7,<3.11; 0.55.0rc1 Requires-Python >=3.7,<3.11; 0.55.1 Requires-Python >=3.7,<3.11; 0.55.2 Requires-Python >=3.7,<3.11; 1.10.0 Requires-Python >=3.8,<3.12; 1.10.0rc1 Requires-Python >=3.8,<3.12; 1.10.0rc2 Requires-Python >=3.8,<3.12; 1.10.1 Requires-Python >=3.8,<3.12; 1.11.0 Requires-Python >=3.9,<3.13; 1.11.0rc1 Requires-Python >=3.9,<3.13; 1.11.0rc2 Requires-Python >=3.9,<3.13; 1.11.1 Requires-Python >=3.9,<3.13; 1.11.2 Requires-Python >=3.9,<3.13; 1.11.3 Requires-Python >=3.9,<3.13; 1.21.2 Requires-Python >=3.7,<3.11; 1.21.3 Requires-Python >=3.7,<3.11; 1.21.4 Requires-Python >=3.7,<3.11; 1.21.5 Requires-Python >=3.7,<3.11; 1.21.6 Requires-Python >=3.7,<3.11; 1.26.0 Requires-Python >=3.9,<3.13; 1.26.1 Requires-Python >=3.9,<3.13; 1.6.2 Requires-Python >=3.7,<3.10; 1.6.3 Requires-Python >=3.7,<3.10; 1.7.0 Requires-Python >=3.7,<3.10; 1.7.1 Requires-Python >=3.7,<3.10; 1.7.2 Requires-Python >=3.7,<3.11; 1.7.3 Requires-Python >=3.7,<3.11; 1.8.0 Requires-Python >=3.8,<3.11; 1.8.0rc1 Requires-Python >=3.8,<3.11; 1.8.0rc2 Requires-Python >=3.8,<3.11; 1.8.0rc3 Requires-Python >=3.8,<3.11; 1.8.0rc4 Requires-Python >=3.8,<3.11; 1.8.1 Requires-Python >=3.8,<3.11; 1.9.0 Requires-Python >=3.8,<3.12; 1.9.0rc1 Requires-Python >=3.8,<3.12; 1.9.0rc2 Requires-Python >=3.8,<3.12; 1.9.0rc3 Requires-Python >=3.8,<3.12; 1.9.1 Requires-Python >=3.8,<3.12; 3.3.0 Requires-Python >=3.9,<3.13; 3.3.1 Requires-Python >=3.9,<3.13; 3.3.2 Requires-Python >=3.9,<3.13; 3.3.3 Requires-Python >=3.9,<3.13; 3.3.4 Requires-Python >=3.9,<3.13; 3.4.0 Requires-Python >=3.9,<3.13; 3.4.1 Requires-Python >=3.9,<3.13; 3.4.2 Requires-Python >=3.9,<3.13 ERROR: Could not find a version that satisfies the requirement ctranslate2==4.4.0 (from whisperx) (from versions: 4.6.0) ERROR: No matching distribution found for ctranslate2==4.4.0 (fse) D:\python\fastapi-speaker-extractor> (fse) D:\python\fastapi-speaker-extractor>python --version Python 3.13.5 (fse) D:\python\fastapi-speaker-extractor>
20250826 0747...
|-转 python 报错 SyntaxError: 'return' outside function
{
"1b38f5a6230ac636944ef3df2a7b18a9aec530f931fed681d942267186102368": {
"short_code": "1uqjLT",
"label": 0.0,
"filepath": "outputs\\preprocessed\\1b38f5a6230ac636944ef3df2a7b18a9aec530f931fed681d942267186102368.wav",
"created_at": "2025-08-26T10:23:35.373116+08:00"
},
"0386ab79e9163b22a2b5e25a84d3443d79b5cc08d7f26d87da3bc68de8340544": {
"short_code": "1uqcmD",
"label": 0.67,
"filepath": "outputs\\preprocessed\\0386ab79e9163b22a2b5e25a84d3443d79b5cc08d7f26d87da3bc68de8340544.wav",
"created_at": "2025-08-26T03:22:45.509993+08:00"
},
"856616252eccfa58e713998fdeaaf8a2acbd896d15977bf780884ca73635cc76": {
"short_code": "1uqiqv",
"label": 0.0,
"filepath": "outputs\\preprocessed\\processed_tmpo9v0me_w_1uqiqv.wav",
"created_at": "2025-08-26T09:52:01.721592+08:00"
}
}
2025-08-26 09:14:02,637 --- app.api.audio_router --- ERROR --- 处理音频时发生错误:
"D:\python\fastapi-speaker-extractor\app\services\audio_processor.py", line 75 return ^ SyntaxError: 'return' outside function 2025-08-26 09:14:02,631 --- app.api.audio_router --- WARNING --- 无法从主应用获取模型: WhisperX 模型未加载 2025-08-26 09:14:02,631 --- app.api.audio_router --- INFO --- 未提供配置参数,使用默认配置 2025-08-26 09:14:02,632 --- app.api.audio_router --- INFO --- 收到请求,文件=西游记多人16秒.wav,config={} 2025-08-26 09:14:02,637 --- app.api.audio_router --- ERROR --- 处理音频时发生错误: Traceback (most recent call last): File "D:\python\fastapi-speaker-extractor\app\api\audio_router.py", line 72, in extract_speaker from app.services.audio_processor import process_audio File "D:\python\fastapi-speaker-extractor\app\services\audio_processor.py", line 75 return ^ SyntaxError: 'return' outside function
Traceback (most recent call last):
File "D:\python\fastapi-speaker-extractor\app\api\audio_router.py", line 72, in extract_speaker
from app.services.audio_processor import process_audio
File "D:\python\fastapi-speaker-extractor\app\services\audio_processor.py", line 75
return
^
# 导入自定义模块 try: from logger import logger from app.utils.embedding_model_middleware import get_embedding_middleware, ModelType from app.utils.onnx_model_loader import ONNXPyannoteEmbedding from app.utils.error_handler import ErrorHandler except ImportError as e: print(f"导入工具模块失败: {e}") return
代码 return的这个写法不知道是错哪里了。
通义灵码:
到目前为止,我们已经解决了以下几个问题:
JSON解析错误 - 通过将 config_value 参数改为可选并改进解析逻辑
类型注解兼容性问题 - 通过使用 Union[Path, str] 替代 Path | str 以支持 Python 3.8+
模型加载问题 - 通过修改模型加载逻辑确保默认加载
目录创建问题 - 通过将字符串路径转换为 Path 对象
现在您的应用程序应该能够正常处理音频文件了。
20250826 0926
G:\ProgramData\miniconda3\envs\speaker-extractor\lib\site-packages\pydub\audio_segment.py:678: RuntimeWarning: coroutine 'UploadFile.seek' was never awaited file.seek(0) RuntimeWarning: Enable tracemalloc to get the object allocation traceback G:\ProgramData\miniconda3\envs\speaker-extractor\lib\site-packages\pydub\audio_segment.py:678: RuntimeWarning: coroutine 'UploadFile.read' was never awaited file.seek(0) RuntimeWarning: Enable tracemalloc to get the object allocation traceback G:\ProgramData\miniconda3\envs\speaker-extractor\lib\site-packages\pydub\utils.py:268: RuntimeWarning: coroutine 'UploadFile.seek' was never awaited file.seek(0) RuntimeWarning: Enable tracemalloc to get the object allocation traceback 2025-08-26 09:26:28,638 --- fastapi-speaker-extractor --- ERROR --- ❌ 处理音频时发生错误: a bytes-like object is required, not 'coroutine' Traceback (most recent call last): File "D:\python\fastapi-speaker-extractor\app\services\audio_processor.py", line 148, in process_audio
22222222
2025-08-26 09:29:05,415 --- fastapi-speaker-extractor --- INFO --- 📊 计算目标说话人占比 ✅ [缓存命中] 从缓存加载目标说话人 embedding: inputs/target_reference/target_reference_embedding\121e918b12035ef25024d8d9e2c8f39b.npy 🎧 正在分析音频,总长度: 3.00 秒,分段长度: 1.5 秒 2025-08-26 09:29:05,422 --- fastapi-speaker-extractor --- ERROR --- ❌ 处理音频时发生错误: 'float' object cannot be interpreted as an integer Traceback (most recent call last):
222222222222
2025-08-26 09:30:22,560 --- fastapi-speaker-extractor --- INFO --- 临时文件已清理: C:\Users\ADMINI~1\AppData\Local\Temp\tmpybyujt8p.wav 2025-08-26 09:30:22,561 --- app.api.audio_router --- ERROR --- 处理音频时发生错误: Traceback (most recent call last): File "D:\python\fastapi-speaker-extractor\app\services\audio_processor.py", line 188, in process_audio proportion = calculate_target_proportion( File "D:\python\fastapi-speaker-extractor\app\utils\audio_utils.py", line 118, in calculate_target_proportion for i in range(num_segments): TypeError: 'float' object cannot be interpreted as an integer
33333
raise RuntimeError(f"音频处理失败: {str(e)}") RuntimeError: 音频处理失败: 'WindowsPath' object has no attribute 'cpu' INFO: 127.0.0.1:14903 - "POST /api/audio/speaker/extract/ HTTP/1.1" 500 Internal Server Error ERROR: Exception in ASGI application Traceback (most recent call last): File "D:\python\fastapi-speaker-extractor\app\services\audio_processor.py", line 223, in process_audio sha256_hash=compute_audio_sha256(output_filepath), File "D:\python\fastapi-speaker-extractor\app\utils\common_utils.py", line 208, in compute_audio_sha256 audio_np = audio_tensor.cpu().numpy() # 转 CPU 并转为 NumPy AttributeError: 'WindowsPath' object has no attribute 'cpu'
5555555 ...
|-转 python常用命令
python -m app.services.batch_process
- 打开 PowerShell(Win+X → Windows PowerShell)。
- 执行下面两条命令,一行一回车:
# 如果 profile 文件不存在,先自动创建 if (!(Test-Path $PROFILE)) { New-Item -ItemType File -Path $PROFILE -Force } # 把激活 fse311 的语句写进去(不会重复写入) Add-Content -Path $PROFILE -Value 'conda activate fse311'
...
|-转 腾讯编程助手
我已经成功修复了batch_process.py文件中的问题。主要修复包括:
- 修复了模块导入问题:添加了项目根目录到sys.path,确保Python能够找到app模块
- 移除了不存在的装饰器:删除了@gpu_memory_monitor装饰器调用
- 修复了函数参数不匹配:调整了process_single_file函数的参数
- 添加了错误处理:为文件处理和批量处理添加了try-catch块
- 添加了目录检查:检查输入目录是否存在,避免运行时错误
- 修复了类型注解:将dict改为dict[str, any]
现在batch_process.py应该能够正常运行了。主要的错误"cannot access local variable 'mixed_dialogue'"已经在audio_processor.py中修复,而batch_process.py的结构和导入问题也已经解决。 20250826 1224...
|-转 python一些扩展兼容安装的处理方案
这里把踩过坑记录下,目的为了节省python的扩展环境的时间,提高效率
即使有了腾讯元宝和Kimi这样的AI智能回答工具,还是要花不少时间才能找到解决方案
为确保datasets和modelscope兼容,请用以下命令安装确定版本...